Abstract:While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
Abstract:LiDAR scene synthesis is an emerging solution to scarcity in 3D data for robotic tasks such as autonomous driving. Recent approaches employ diffusion or flow matching models to generate realistic scenes, but 3D data remains limited compared to RGB datasets with millions of samples. We introduce R3DPA, the first LiDAR scene generation method to unlock image-pretrained priors for LiDAR point clouds, and leverage self-supervised 3D representations for state-of-the-art results. Specifically, we (i) align intermediate features of our generative model with self-supervised 3D features, which substantially improves generation quality; (ii) transfer knowledge from large-scale image-pretrained generative models to LiDAR generation, mitigating limited LiDAR datasets; and (iii) enable point cloud control at inference for object inpainting and scene mixing with solely an unconditional model. On the KITTI-360 benchmark R3DPA achieves state of the art performance. Code and pretrained models are available at https://github.com/valeoai/R3DPA.
Abstract:Generating realistic and diverse layouts of furnished indoor 3D scenes unlocks multiple interactive applications impacting a wide range of industries. The inherent complexity of object interactions, the limited amount of available data and the requirement to fulfill spatial constraints all make generative modeling for 3D scene synthesis and arrangement challenging. Current methods address these challenges autoregressively or by using off-the-shelf diffusion objectives by simultaneously predicting all attributes without 3D reasoning considerations. In this paper, we introduce DeBaRA, a score-based model specifically tailored for precise, controllable and flexible arrangement generation in a bounded environment. We argue that the most critical component of a scene synthesis system is to accurately establish the size and position of various objects within a restricted area. Based on this insight, we propose a lightweight conditional score-based model designed with 3D spatial awareness at its core. We demonstrate that by focusing on spatial attributes of objects, a single trained DeBaRA model can be leveraged at test time to perform several downstream applications such as scene synthesis, completion and re-arrangement. Further, we introduce a novel Self Score Evaluation procedure so it can be optimally employed alongside external LLM models. We evaluate our approach through extensive experiments and demonstrate significant improvement upon state-of-the-art approaches in a range of scenarios.