NYU
Abstract:This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results. This challenge aims to obtain an efficient deep neural network capable of estimating the perceptual quality of real portrait photos. The methods must generalize to diverse scenes and diverse lighting conditions (indoor, outdoor, low-light), movement, blur, and other challenging conditions. In the challenge, 140 participants registered, and 35 submitted results during the challenge period. The performance of the top 5 submissions is reviewed and provided here as a gauge for the current state-of-the-art in Portrait Quality Assessment.
Abstract:Blind image quality assessment (BIQA) approaches, while promising for automating image quality evaluation, often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images. This one-size-fits-all approach overlooks the crucial perceptual relationship between image content and quality, leading to a 'domain shift' challenge where a single quality metric inadequately represents various content types. Furthermore, BIQA techniques typically overlook the inherent differences in the human visual system among different observers. In response to these challenges, this paper introduces PICNIQ, an innovative pairwise comparison framework designed to bypass the limitations of conventional BIQA by emphasizing relative, rather than absolute, quality assessment. PICNIQ is specifically designed to assess the quality differences between image pairs. The proposed framework implements a carefully crafted deep learning architecture, a specialized loss function, and a training strategy optimized for sparse comparison settings. By employing psychometric scaling algorithms like TrueSkill, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality. We conduct our research using comparison matrices from the PIQ23 dataset, which are published in this paper. Our extensive experimental analysis showcases PICNIQ's broad applicability and superior performance over existing models, highlighting its potential to set new standards in the field of BIQA.
Abstract:Automated and robust portrait quality assessment (PQA) is of paramount importance in high-impact applications such as smartphone photography. This paper presents FHIQA, a learning-based approach to PQA that introduces a simple but effective quality score rescaling method based on image semantics, to enhance the precision of fine-grained image quality metrics while ensuring robust generalization to various scene settings beyond the training dataset. The proposed approach is validated by extensive experiments on the PIQ23 benchmark and comparisons with the current state of the art. The source code of FHIQA will be made publicly available on the PIQ23 GitHub repository at https://github.com/DXOMARK-Research/PIQ2023.
Abstract:Year after year, the demand for ever-better smartphone photos continues to grow, in particular in the domain of portrait photography. Manufacturers thus use perceptual quality criteria throughout the development of smartphone cameras. This costly procedure can be partially replaced by automated learning-based methods for image quality assessment (IQA). Due to its subjective nature, it is necessary to estimate and guarantee the consistency of the IQA process, a characteristic lacking in the mean opinion scores (MOS) widely used for crowdsourcing IQA. In addition, existing blind IQA (BIQA) datasets pay little attention to the difficulty of cross-content assessment, which may degrade the quality of annotations. This paper introduces PIQ23, a portrait-specific IQA dataset of 5116 images of 50 predefined scenarios acquired by 100 smartphones, covering a high variety of brands, models, and use cases. The dataset includes individuals of various genders and ethnicities who have given explicit and informed consent for their photographs to be used in public research. It is annotated by pairwise comparisons (PWC) collected from over 30 image quality experts for three image attributes: face detail preservation, face target exposure, and overall image quality. An in-depth statistical analysis of these annotations allows us to evaluate their consistency over PIQ23. Finally, we show through an extensive comparison with existing baselines that semantic information (image context) can be used to improve IQA predictions. The dataset along with the proposed statistical analysis and BIQA algorithms are available: https://github.com/DXOMARK-Research/PIQ2023