Abstract:We have developed a method for extracting the coherence features from a paragraph by matching similar words in its sentences. We conducted an experiment with a parallel German corpus containing 2000 human-created and 2000 machine-translated paragraphs. The result showed that our method achieved the best performance (accuracy = 72.3%, equal error rate = 29.8%) when it is compared with previous methods on various computer-generated text including translation and paper generation (best accuracy = 67.9%, equal error rate = 32.0%). Experiments on Dutch, another rich resource language, and a low resource one (Japanese) attained similar performances. It demonstrated the efficiency of the coherence features at distinguishing computer-translated from human-created paragraphs on diverse languages.
Abstract:Making computer-generated (CG) images more difficult to detect is an interesting problem in computer graphics and security. While most approaches focus on the image rendering phase, this paper presents a method based on increasing the naturalness of CG facial images from the perspective of spoofing detectors. The proposed method is implemented using a convolutional neural network (CNN) comprising two autoencoders and a transformer and is trained using a black-box discriminator without gradient information. Over 50% of the transformed CG images were not detected by three state-of-the-art spoofing detectors. This capability raises an alarm regarding the reliability of facial authentication systems, which are becoming widely used in daily life.