Abstract:This paper presents ExPECA, an edge computing and wireless communication research testbed designed to tackle two pressing challenges: comprehensive end-to-end experimentation and high levels of experimental reproducibility. Leveraging OpenStack-based Chameleon Infrastructure (CHI) framework for its proven flexibility and ease of operation, ExPECA is located in a unique, isolated underground facility, providing a highly controlled setting for wireless experiments. The testbed is engineered to facilitate integrated studies of both communication and computation, offering a diverse array of Software-Defined Radios (SDR) and Commercial Off-The-Shelf (COTS) wireless and wired links, as well as containerized computational environments. We exemplify the experimental possibilities of the testbed using OpenRTiST, a latency-sensitive, bandwidth-intensive application, and analyze its performance. Lastly, we highlight an array of research domains and experimental setups that stand to gain from ExPECA's features, including closed-loop applications and time-sensitive networking.
Abstract:End-to-end learning for wireless communications has recently attracted much interest in the community, owing to the emergence of deep learning-based architectures for the physical layer. Neural network-based autoencoders have been proposed as potential replacements of traditional model-based transmitter and receiver structures. Such a replacement primarily provides an unprecedented level of flexibility, allowing to tune such emerging physical layer network stacks in many different directions. The semantic relevance of the transmitted messages is one of those directions. In this paper, we leverage a specific semantic relationship between the occurrence of a message (the source), and the channel statistics. Such a scenario could be illustrated for instance, in vehicular communications where the distance is to be conveyed between a leader and a follower. We study two autoencoder approaches where these special circumstances are exploited. We then evaluate our autoencoders, showing through the simulations that the semantic optimization can achieve significant improvements in the BLER and RMSE for vehicular communications leading to considerably reduced risks and needs for message re-transmissions.