Abstract:The growth of Educational Technology (EdTech) has enabled highly personalized learning experiences through Artificial Intelligence (AI)-based recommendation systems tailored to each student needs. However, these systems can unintentionally introduce biases, potentially limiting fair access to learning resources. This study presents a recommendation system for K-12 students, combining graph-based modeling and matrix factorization to provide personalized suggestions for extracurricular activities, learning resources, and volunteering opportunities. To address fairness concerns, the system includes a framework to detect and reduce biases by analyzing feedback across protected student groups. This work highlights the need for continuous monitoring in educational recommendation systems to support equitable, transparent, and effective learning opportunities for all students.
Abstract:The ``impossibility theorem'' -- which is considered foundational in algorithmic fairness literature -- asserts that there must be trade-offs between common notions of fairness and performance when fitting statistical models, except in two special cases: when the prevalence of the outcome being predicted is equal across groups, or when a perfectly accurate predictor is used. However, theory does not always translate to practice. In this work, we challenge the implications of the impossibility theorem in practical settings. First, we show analytically that, by slightly relaxing the impossibility theorem (to accommodate a \textit{practitioner's} perspective of fairness), it becomes possible to identify a large set of models that satisfy seemingly incompatible fairness constraints. Second, we demonstrate the existence of these models through extensive experiments on five real-world datasets. We conclude by offering tools and guidance for practitioners to understand when -- and to what degree -- fairness along multiple criteria can be achieved. For example, if one allows only a small margin-of-error between metrics, there exists a large set of models simultaneously satisfying \emph{False Negative Rate Parity}, \emph{False Positive Rate Parity}, and \emph{Positive Predictive Value Parity}, even when there is a moderate prevalence difference between groups. This work has an important implication for the community: achieving fairness along multiple metrics for multiple groups (and their intersections) is much more possible than was previously believed.