Abstract:Large Language Models (LLMs) have rapidly reshaped financial NLP, enabling new tasks and driving a proliferation of datasets and diversification of data sources. Yet, this transformation has outpaced traditional surveys. In this paper, we present MetaGraph, a generalizable methodology for extracting knowledge graphs from scientific literature and analyzing them to obtain a structured, queryable view of research trends. We define an ontology for financial NLP research and apply an LLM-based extraction pipeline to 681 papers (2022-2025), enabling large-scale, data-driven analysis. MetaGraph reveals three key phases: early LLM adoption and task/dataset innovation; critical reflection on LLM limitations; and growing integration of peripheral techniques into modular systems. This structured view offers both practitioners and researchers a clear understanding of how financial NLP has evolved - highlighting emerging trends, shifting priorities, and methodological shifts-while also demonstrating a reusable approach for mapping scientific progress in other domains.
Abstract:The continued outsourcing of printed circuit board (PCB) fabrication to overseas venues necessitates increased hardware assurance capabilities. Toward this end, several automated optical inspection (AOI) techniques have been proposed in the past exploring various aspects of PCB images acquired using digital cameras. In this work, we review state-of-the-art AOI techniques and observed the strong, rapid trend toward machine learning (ML) solutions. These require significant amounts of labeled ground truth data, which is lacking in the publicly available PCB data space. We propose the FICS PBC Image Collection (FPIC) dataset to address this bottleneck in available large-volume, diverse, semantic annotations. Additionally, this work covers the potential increase in hardware security capabilities and observed methodological distinctions highlighted during data collection.