Abstract:A Bill of Materials (BoM) is a list of all components on a printed circuit board (PCB). Since BoMs are useful for hardware assurance, automatic BoM extraction (AutoBoM) is of great interest to the government and electronics industry. To achieve a high-accuracy AutoBoM process, domain knowledge of PCB text and logos must be utilized. In this study, we discuss the challenges associated with automatic PCB marking extraction and propose 1) a plan for collecting salient PCB marking data, and 2) a framework for incorporating this data for automatic PCB assurance. Given the proposed dataset plan and framework, subsequent future work, implications, and open research possibilities are detailed.
Abstract:The continued outsourcing of printed circuit board (PCB) fabrication to overseas venues necessitates increased hardware assurance capabilities. Toward this end, several automated optical inspection (AOI) techniques have been proposed in the past exploring various aspects of PCB images acquired using digital cameras. In this work, we review state-of-the-art AOI techniques and observed the strong, rapid trend toward machine learning (ML) solutions. These require significant amounts of labeled ground truth data, which is lacking in the publicly available PCB data space. We propose the FICS PBC Image Collection (FPIC) dataset to address this bottleneck in available large-volume, diverse, semantic annotations. Additionally, this work covers the potential increase in hardware security capabilities and observed methodological distinctions highlighted during data collection.