Abstract:Purpose: Our study explored the use of artificial intelligence (AI) to diagnose autism spectrum disorder (ASD). It focused on machine learning (ML) and deep learning (DL) to detect ASD from text inputs on social media, addressing challenges in traditional ASD diagnosis. Methods: We used natural language processing (NLP), ML, and DL models (including decision trees, XGB, KNN, RNN, LSTM, Bi-LSTM, BERT, and BERTweet) to analyze 404,627 tweets, classifying them based on ASD or non-ASD authors. A subset of 90,000 tweets was used for model training and testing. Results: Our AI models showed high accuracy, with an 88% success rate in identifying texts from individuals with ASD. Conclusion: The study demonstrates AI's potential in improving ASD diagnosis, especially in children, highlighting the importance of early detection.
Abstract:One of the main challenges in simultaneous localization and mapping (SLAM) is real-time processing. High-computational loads linked to data acquisition and processing complicate this task. This article presents an efficient feature extraction approach for mapping structured environments. The proposed methodology, weighted conformal LiDAR-mapping (WCLM), is based on the extraction of polygonal profiles and propagation of uncertainties from raw measurement data. This is achieved using conformal M bius transformation. The algorithm has been validated experimentally using 2-D data obtained from a low-cost Light Detection and Ranging (LiDAR) range finder. The results obtained suggest that computational efficiency is significantly improved with reference to other state-of-the-art SLAM approaches.