Abstract:We present ConvoCache, a conversational caching system that solves the problem of slow and expensive generative AI models in spoken chatbots. ConvoCache finds a semantically similar prompt in the past and reuses the response. In this paper we evaluate ConvoCache on the DailyDialog dataset. We find that ConvoCache can apply a UniEval coherence threshold of 90% and respond to 89% of prompts using the cache with an average latency of 214ms, replacing LLM and voice synthesis that can take over 1s. To further reduce latency we test prefetching and find limited usefulness. Prefetching with 80% of a request leads to a 63% hit rate, and a drop in overall coherence. ConvoCache can be used with any chatbot to reduce costs by reducing usage of generative AI by up to 89%.
Abstract:Attack paths are the potential chain of malicious activities an attacker performs to compromise network assets and acquire privileges through exploiting network vulnerabilities. Attack path analysis helps organizations to identify new/unknown chains of attack vectors that reach critical assets within the network, as opposed to individual attack vectors in signature-based attack analysis. Timely identification of attack paths enables proactive mitigation of threats. Nevertheless, manual analysis of complex network configurations, vulnerabilities, and security events to identify attack paths is rarely feasible. This work proposes a novel transferable graph neural network-based model for shortest path identification. The proposed shortest path detection approach, integrated with a novel holistic and comprehensive model for identifying potential network vulnerabilities interactions, is then utilized to detect network attack paths. Our framework automates the risk assessment of attack paths indicating the propensity of the paths to enable the compromise of highly-critical assets (e.g., databases) given the network configuration, assets' criticality, and the severity of the vulnerabilities in-path to the asset. The proposed framework, named SPGNN-API, incorporates automated threat mitigation through a proactive timely tuning of the network firewall rules and zero-trust policies to break critical attack paths and bolster cyber defenses. Our evaluation process is twofold; evaluating the performance of the shortest path identification and assessing the attack path detection accuracy. Our results show that SPGNN-API largely outperforms the baseline model for shortest path identification with an average accuracy >= 95% and successfully detects 100% of the potentially compromised assets, outperforming the attack graph baseline by 47%.