Abstract:COVID-19 forecasting models have been used to inform decision making around resource allocation and intervention decisions e.g., hospital beds or stay-at-home orders. State of the art deep learning models often use multimodal data such as mobility or socio-demographic data to enhance COVID-19 case prediction models. Nevertheless, related work has revealed under-reporting bias in COVID-19 cases as well as sampling bias in mobility data for certain minority racial and ethnic groups, which could in turn affect the fairness of the COVID-19 predictions along race labels. In this paper, we show that state of the art deep learning models output mean prediction errors that are significantly different across racial and ethnic groups; and which could, in turn, support unfair policy decisions. We also propose a novel de-biasing method, DemOpts, to increase the fairness of deep learning based forecasting models trained on potentially biased datasets. Our results show that DemOpts can achieve better error parity that other state of the art de-biasing approaches, thus effectively reducing the differences in the mean error distributions across more racial and ethnic groups.
Abstract:We present ABC-Net, a novel semi-supervised multimodal GAN framework to detect engagement levels in video conversations based on psychology literature. We use three constructs: behavioral, cognitive, and affective engagement, to extract various features that can effectively capture engagement levels. We feed these features to our semi-supervised GAN network that does regression using these latent representations to obtain the corresponding valence and arousal values, which are then categorized into different levels of engagements. We demonstrate the efficiency of our network through experiments on the RECOLA database. To evaluate our method, we analyze and compare our performance on RECOLA and report a relative performance improvement of more than 5% over the baseline methods. To the best of our knowledge, our approach is the first method to classify engagement based on a multimodal semi-supervised network.