Abstract:Our research presents a comprehensive approach to leveraging mobile camera image data for real-time air quality assessment and recommendation. We develop a regression-based Convolutional Neural Network model and tailor it explicitly for air quality prediction by exploiting the inherent relationship between output parameters. As a result, the Mean Squared Error of 0.0077 and 0.0112 obtained for 2 and 5 pollutants respectively outperforms existing models. Furthermore, we aim to verify the common practice of augmenting the original dataset with a view to introducing more variation in the training phase. It is one of our most significant contributions that our experimental results demonstrate minimal accuracy differences between the original and augmented datasets. Finally, a real-time, user-friendly dashboard is implemented which dynamically displays the Air Quality Index and pollutant values derived from captured mobile camera images. Users' health conditions are considered to recommend whether a location is suitable based on current air quality metrics. Overall, this research contributes to verification of data augmentation techniques, CNN-based regression modelling for air quality prediction, and user-centric air quality monitoring through mobile technology. The proposed system offers practical solutions for individuals to make informed environmental health and well-being decisions.
Abstract:Efficient air quality sensing serves as one of the essential services provided in any recent smart city. Mostly facilitated by sparsely deployed Air Quality Monitoring Stations (AQMSs) that are difficult to install and maintain, the overall spatial variation heavily impacts air quality monitoring for locations far enough from these pre-deployed public infrastructures. To mitigate this, we in this paper propose a framework named AQuaMoHo that can annotate data obtained from a low-cost thermo-hygrometer (as the sole physical sensing device) with the AQI labels, with the help of additional publicly crawled Spatio-temporal information of that locality. At its core, AQuaMoHo exploits the temporal patterns from a set of readily available spatial features using an LSTM-based model and further enhances the overall quality of the annotation using temporal attention. From a thorough study of two different cities, we observe that AQuaMoHo can significantly help annotate the air quality data on a personal scale.