Abstract:When users stand to gain from certain predictions, they are prone to act strategically to obtain favorable predictive outcomes. Whereas most works on strategic classification consider user actions that manifest as feature modifications, we study a novel setting in which users decide -- in response to the learned classifier -- whether to at all participate (or not). For learning approaches of increasing strategic awareness, we study the effects of self-selection on learning, and the implications of learning on the composition of the self-selected population. We then propose a differentiable framework for learning under self-selective behavior, which can be optimized effectively. We conclude with experiments on real data and simulated behavior that both complement our analysis and demonstrate the utility of our approach.
Abstract:In principal-agent models, a principal offers a contract to an agent to perform a certain task. The agent exerts a level of effort that maximizes her utility. The principal is oblivious to the agent's chosen level of effort, and conditions her wage only on possible outcomes. In this work, we consider a model in which the principal is unaware of the agent's utility and action space. She sequentially offers contracts to identical agents, and observes the resulting outcomes. We present an algorithm for learning the optimal contract under mild assumptions. We bound the number of samples needed for the principal obtain a contract that is within $\epsilon$ of her optimal net profit for every $\epsilon>0$.