Abstract:As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
Abstract:The increasing integration of large language model (LLM) based conversational agents into everyday life raises critical cognitive and social questions about their potential to influence human opinions. Although previous studies have shown that LLM-based agents can generate persuasive content, these typically involve controlled, English-language settings. Addressing this, our preregistered study explored LLM's persuasive capabilities in more ecological, unconstrained scenarios, examining both static (written paragraphs) and dynamic (conversations via Telegram) interaction types. Conducted entirely in Hebrew with 200 participants, the study assessed the persuasive effects of both LLM and human interlocutors on controversial civil policy topics. Results indicated that participants adopted LLM and human perspectives similarly, with significant opinion changes evident across all conditions, regardless of interlocutor type or interaction mode. Confidence levels increased significantly in most scenarios, except in static LLM interactions. These findings demonstrate LLM-based agents' robust persuasive capabilities across diverse sources and settings, highlighting their potential impact on shaping public opinions.
Abstract:Recent advancements in natural language processing, especially the emergence of Large Language Models (LLMs), have opened exciting possibilities for constructing computational simulations designed to replicate human behavior accurately. However, LLMs are complex statistical learners without straightforward deductive rules, making them prone to unexpected behaviors. In this study, we highlight the limitations of LLMs in simulating human interactions, particularly focusing on LLMs' ability to simulate political debates. Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases despite being directed to debate from certain political perspectives. This tendency results in behavioral patterns that seem to deviate from well-established social dynamics among humans. We reinforce these observations using an automatic self-fine-tuning method, which enables us to manipulate the biases within the LLM and demonstrate that agents subsequently align with the altered biases. These results underscore the need for further research to develop methods that help agents overcome these biases, a critical step toward creating more realistic simulations.