Abstract:There is a growing interest in codebook-based beam-steering for millimeter-wave (mmWave) systems due to its potential for low complexity and rapid beam search. A key focus of recent research has been the design of codebooks that strike a trade-off between achievable gain and codebook size, which directly impacts beam search time. Statistical approaches have shown promise by leveraging the likelihood that certain beam directions (equivalently, sets of phase-shifter configurations) are more probable than others. Such approaches are shown to be valid for static, non-rotating transmission stations such as base stations. However, for the case of user terminals that are constantly changing orientation, the possible phase-shifter configurations become equally probable, rendering statistical methods less relevant. On the other hand, user terminals come with a large number of possible steering vector configurations, which can span up to six orders of magnitude. Therefore, efficient solutions to reduce the codebook size (set of possible steering vectors) without compromising array gain are needed. We address this challenge by proposing a novel and practical codebook refinement technique, aiming to reduce the codebook size while maintaining array gain within $\gamma$ dB of the maximum achievable gain at any random orientation of the user terminal. We project that a steering vector at a given angle could effectively cover adjacent angles with a small gain loss compared to the maximum achievable gain. We demonstrate experimentally that it is possible to reduce the codebook size from $1024^{16}$ to just a few configurations (e.g., less than ten), covering all angles while maintaining the gain within $\gamma=3$ dB of the maximum achievable gain.
Abstract:Ultra Reliable and Low Latency Communications (URLLC) is deemed to be an essential service in 5G systems and beyond to accommodate a wide range of emerging applications with stringent latency and reliability requirements. Coexistence of URLLC alongside other service categories calls for developing spectrally efficient multiplexing techniques. Specifically, coupling URLLC and conventional enhanced Mobile BroadBand (eMBB) through superposition/puncturing naturally arises as a promising option due to the tolerance of the latter in terms of latency and reliability. The idea here is to transmit URLLC packets over resources occupied by ongoing eMBB transmissions while minimizing the impact on the eMBB transmissions. In this paper, we propose a novel downlink URLLC-eMBB multiplexing technique that exploits possible similarities among URLLC and eMBB symbols, with the objective of reducing the size of the punctured eMBB symbols. We propose that the base station scans the eMBB traffic' symbol sequences and punctures those that have the highest symbol similarity with that of the URLLC users to be served. As the eMBB and URLLC may use different constellation sizes, we introduce the concept of symbol region similarity to accommodate the different constellations. We assess the performance of the proposed scheme analytically, where we derive closed-form expressions for the symbol error rate (SER) of the eMBB and URLLC services. {We also derive an expression for the eMBB loss function due to puncturing in terms of the eMBB SER}. We demonstrate through numerical and simulation results the efficacy of the proposed scheme where we show that 1) the eMBB spectral efficiency is improved by puncturing fewer symbols, 2) the SER and reliability performance of eMBB are improved, and 3) the URLLC data is accommodated within the specified delay constraint while maintaining its reliability.