Abstract:Extreme natural phenomena are occurring more frequently everyday in the world, challenging, among others, the infrastructure of communication networks. For instance, the devastating earthquakes in Turkiye in early 2023 showcased that, although communications became an imminent priority, existing mobile communication systems fell short with the operational requirements of harsh disaster environments. In this article, we present a novel framework for robust, resilient, adaptive, and open source sixth generation (6G) radio access networks (Open6GRAN) that can provide uninterrupted communication services in the face of natural disasters and other disruptions. Advanced 6G technologies, such as reconfigurable intelligent surfaces (RISs), cell-free multiple-input-multiple-output, and joint communications and sensing with increasingly heterogeneous deployment, consisting of terrestrial and non-terrestrial nodes, are robustly integrated. We advocate that a key enabler to develop service and management orchestration with fast recovery capabilities will rely on an artificial-intelligence-based radio access network (RAN) controller. To support the emergency use case spanning a larger area, the integration of aerial and space segments with the terrestrial network promises a rapid and reliable response in the case of any disaster. A proof-of-concept that rapidly reconfigures an RIS for performance enhancement under an emergency scenario is presented and discussed.
Abstract:This paper presents reconfigurable intelligent surface (RIS)-aided deep learning (DL)-based spectrum sensing for next-generation cognitive radios. To that end, the secondary user (SU) monitors the primary transmitter (PT) signal, where the RIS plays a pivotal role in increasing the strength of the PT signal at the SU. The spectrograms of the synthesized dataset, including the 4G LTE and 5G NR signals, are mapped to images utilized for training the state-of-art object detection approaches, namely Detectron2 and YOLOv7. By conducting extensive experiments using a real RIS prototype, we demonstrate that the RIS can consistently and significantly improve the performance of the DL detectors to identify the PT signal type along with its time and frequency utilization. This study also paves the way for optimizing spectrum utilization through RIS-assisted CR application in next-generation wireless communication systems.