Abstract:In this research work, a novel framework is pro- posed as an efficient successor to traditional imaging methods for breast cancer detection in order to decrease the computational complexity. In this framework, the breast is devided into seg- ments in an iterative process and in each iteration, the one having the most probability of containing tumor with lowest possible resolution is selected by using suitable decision metrics. After finding the smallest tumor-containing segment, the resolution is increased in the detected tumor-containing segment, leaving the other parts of the breast image with low resolution. Our framework is applied on the most common used beamforming techniques, such as delay and sum (DAS) and delay multiply and sum (DMAS) and according to simulation results, our framework can decrease the computational complexity significantly for both DAS and DMAS without imposing any degradation on accuracy of basic algorithms. The amount of complexity reduction can be determined manually or automatically based on two proposed methods that are described in this framework.
Abstract:This paper introduces a framework for super-resolution of scalable video based on compressive sensing and sparse representation of residual frames in reconnaissance and surveillance applications. We exploit efficient compressive sampling and sparse reconstruction algorithms to super-resolve the video sequence with respect to different compression rates. We use the sparsity of residual information in residual frames as the key point in devising our framework. Moreover, a controlling factor as the compressibility threshold to control the complexity-performance trade-off is defined. Numerical experiments confirm the efficiency of the proposed framework in terms of the compression rate as well as the quality of reconstructed video sequence in terms of PSNR measure. The framework leads to a more efficient compression rate and higher video quality compared to other state-of-the-art algorithms considering performance-complexity trade-offs.