Abstract:In an increasingly customer-centric business environment, effective communication between marketing and senior management is crucial for success. With the rise of globalization and increased competition, utilizing new data mining techniques to identify potential customers is essential for direct marketing efforts. This paper proposes a data mining preprocessing method for developing a customer profiling system to improve sales performance, including customer equity estimation and customer action prediction. The RFM-analysis methodology is used to evaluate client capital and a boosting tree for prediction. The study highlights the importance of customer segmentation methods and algorithms to increase the accuracy of the prediction. The main result of this study is the creation of a customer profile and forecast for the sale of goods.
Abstract:Tables are everywhere, from scientific journals, papers, websites, and newspapers all the way to items we buy at the supermarket. Detecting them is thus of utmost importance to automatically understanding the content of a document. The performance of table detection has substantially increased thanks to the rapid development of deep learning networks. The goals of this survey are to provide a profound comprehension of the major developments in the field of Table Detection, offer insight into the different methodologies, and provide a systematic taxonomy of the different approaches. Furthermore, we provide an analysis of both classic and new applications in the field. Lastly, the datasets and source code of the existing models are organized to provide the reader with a compass on this vast literature. Finally, we go over the architecture of utilizing various object detection and table structure recognition methods to create an effective and efficient system, as well as a set of development trends to keep up with state-of-the-art algorithms and future research. We have also set up a public GitHub repository where we will be updating the most recent publications, open data, and source code. The GitHub repository is available at https://github.com/abdoelsayed2016/table-detection-structure-recognition.
Abstract:This research approaches the task of handwritten text with attention encoder-decoder networks that are trained on Kazakh and Russian language. We developed a novel deep neural network model based on Fully Gated CNN, supported by Multiple bidirectional GRU and Attention mechanisms to manipulate sophisticated features that achieve 0.045 Character Error Rate (CER), 0.192 Word Error Rate (WER) and 0.253 Sequence Error Rate (SER) for the first test dataset and 0.064 CER, 0.24 WER and 0.361 SER for the second test dataset. Also, we propose fully gated layers by taking the advantage of multiple the output feature from Tahn and input feature, this proposed work achieves better results and We experimented with our model on the Handwritten Kazakh & Russian Database (HKR). Our research is the first work on the HKR dataset and demonstrates state-of-the-art results to most of the other existing models.
Abstract:Artificial intelligence can now provide more solutions for different problems, especially in the medical field. One of those problems the lack of answers to any given medical/health-related question. The Internet is full of forums that allow people to ask some specific questions and get great answers for them. Nevertheless, browsing these questions in order to locate one similar to your own, also finding a satisfactory answer is a difficult and time-consuming task. This research will introduce a solution to this problem by automating the process of generating qualified answers to these questions and creating a kind of digital doctor. Furthermore, this research will train an end-to-end model using the framework of RNN and the encoder-decoder to generate sensible and useful answers to a small set of medical/health issues. The proposed model was trained and evaluated using data from various online services, such as WebMD, HealthTap, eHealthForums, and iCliniq.