Abstract:At online retail platforms, detecting fraudulent accounts and transactions is crucial to improve customer experience, minimize loss, and avoid unauthorized transactions. Despite the variety of different models for deep learning on graphs, few approaches have been proposed for dealing with graphs that are both heterogeneous and dynamic. In this paper, we propose DyHGN (Dynamic Heterogeneous Graph Neural Network) and its variants to capture both temporal and heterogeneous information. We first construct dynamic heterogeneous graphs from registration and transaction data from eBay. Then, we build models with diachronic entity embedding and heterogeneous graph transformer. We also use model explainability techniques to understand the behaviors of DyHGN-* models. Our findings reveal that modelling graph dynamics with heterogeneous inputs need to be conducted with "attention" depending on the data structure, distribution, and computation cost.
Abstract:Massive account registration has raised concerns on risk management in e-commerce companies, especially when registration increases rapidly within a short time frame. To monitor these registrations constantly and minimize the potential loss they might incur, detecting massive registration and predicting their riskiness are necessary. In this paper, we propose a Dynamic Heterogeneous Graph Neural Network framework to capture suspicious massive registrations (DHGReg). We first construct a dynamic heterogeneous graph from the registration data, which is composed of a structural subgraph and a temporal subgraph. Then, we design an efficient architecture to predict suspicious/benign accounts. Our proposed model outperforms the baseline models and is computationally efficient in processing a dynamic heterogeneous graph constructed from a real-world dataset. In practice, the DHGReg framework would benefit the detection of suspicious registration behaviors at an early stage.