Abstract:Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as $O(T^2 \times \text{polylog}(n))$, where $n$ is the size of the models and $T$ is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.
Abstract:We develop numerical protocols for estimating the frame potential, the 2-norm distance between a given ensemble and the exact Haar randomness, using the \texttt{QTensor} platform. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high performing using CPU and GPU parallelism. We apply the above methods to two problems: the Brown-Susskind conjecture, with local and parallel random circuits in terms of the Haar distance and the approximate $k$-design properties of the hardware efficient ans{\"a}tze in quantum machine learning, which induce the barren plateau problem. We estimate frame potentials with these ensembles up to 50 qubits and $k=5$, examine the Haar distance of the hardware-efficient ans{\"a}tze, and verify the Brown-Susskind conjecture numerically. Our work shows that large-scale tensor network simulations could provide important hints toward open problems in quantum information science.