Abstract:Visual SLAM (Simultaneous Localization and Mapping) based on planar features has found widespread applications in fields such as environmental structure perception and augmented reality. However, current research faces challenges in accurately localizing and mapping in planar ambiguous scenes, primarily due to the poor accuracy of the employed planar features and data association methods. In this paper, we propose a visual SLAM system based on planar features designed for planar ambiguous scenes, encompassing planar processing, data association, and multi-constraint factor graph optimization. We introduce a planar processing strategy that integrates semantic information with planar features, extracting the edges and vertices of planes to be utilized in tasks such as plane selection, data association, and pose optimization. Next, we present an integrated data association strategy that combines plane parameters, semantic information, projection IoU (Intersection over Union), and non-parametric tests, achieving accurate and robust plane data association in planar ambiguous scenes. Finally, we design a set of multi-constraint factor graphs for camera pose optimization. Qualitative and quantitative experiments conducted on publicly available datasets demonstrate that our proposed system competes effectively in both accuracy and robustness in terms of map construction and camera localization compared to state-of-the-art methods.
Abstract:This study develops a methodology by capturing both the battery aging state and degradation rate for improved life prediction performance. The aging state is indicated by six physical features of an equivalent circuit model that are extracted from the voltage relaxation data. And the degradation rate is captured by two features extracted from the differences between the voltage relaxation curves within a moving window (for life prediction), or the differences between the capacity vs. voltage curves at different cycles (for life classification). Two machine learning models, which are constructed based on Gaussian Processes, are used to describe the relationships between these physical features and battery lifetimes for the life prediction and classification, respectively. The methodology is validated with the aging data of 74 battery cells of three different types. Experimental results show that based on only 3-12 minutes' sampling data, the method with novel features predicts accurate battery lifetimes, with the prediction accuracy improved by up to 67.09% compared with the benchmark method. And the batteries are classified into three groups (long, medium, and short) with an overall accuracy larger than 90% based on only two adjacent cycles' information, enabling the highly efficient regrouping of retired batteries.