Abstract:Abdominal Undulation with Compliant Mechanism Improves Flight Performance of Biomimetic Robotic ButterflThis paper presents the design, modeling, and experimental validation of a biomimetic robotic butterfly (BRB) that integrates a compliant mechanism to achieve coupled wing-abdomen motion. Drawing inspiration from the natural f light dynamics of butterflies, a theoretical model is developed to investigate the impact of abdominal undulation on flight performance. To validate the model, motion capture experi ments are conducted on three configurations: a BRB without an abdomen, with a fixed abdomen, and with an undulating abdomen. The results demonstrate that abdominal undulation enhances lift generation, extends flight duration, and stabilizes pitch oscillations, thereby improving overall flight performance. These findings underscore the significance of wing-abdomen interaction in flapping-wing aerial vehicles (FWAVs) and lay the groundwork for future advancements in energy-efficient biomimetic flight designs.
Abstract:As Large Language Models (LLMs) are progressively deployed across diverse fields and real-world applications, ensuring the security and robustness of LLMs has become ever more critical. Retrieval-Augmented Generation (RAG) is a cutting-edge approach designed to address the limitations of large language models (LLMs). By retrieving information from the relevant knowledge database, RAG enriches the input to LLMs, enabling them to produce responses that are more accurate and contextually appropriate. It is worth noting that the knowledge database, being sourced from publicly available channels such as Wikipedia, inevitably introduces a new attack surface. RAG poisoning involves injecting malicious texts into the knowledge database, ultimately leading to the generation of the attacker's target response (also called poisoned response). However, there are currently limited methods available for detecting such poisoning attacks. We aim to bridge the gap in this work. Particularly, we introduce RevPRAG, a flexible and automated detection pipeline that leverages the activations of LLMs for poisoned response detection. Our investigation uncovers distinct patterns in LLMs' activations when generating correct responses versus poisoned responses. Our results on multiple benchmark datasets and RAG architectures show our approach could achieve 98% true positive rate, while maintaining false positive rates close to 1%. We also evaluate recent backdoor detection methods specifically designed for LLMs and applicable for identifying poisoned responses in RAG. The results demonstrate that our approach significantly surpasses them.