Abstract:Despite some promising results in federated learning using game-theoretical methods, most existing studies mainly employ a one-level game in either a cooperative or competitive environment, failing to capture the complex dynamics among participants in practice. To address this issue, we propose DualGFL, a novel Federated Learning framework with a Dual-level Game in cooperative-competitive environments. DualGFL includes a lower-level hedonic game where clients form coalitions and an upper-level multi-attribute auction game where coalitions bid for training participation. At the lower-level DualGFL, we introduce a new auction-aware utility function and propose a Pareto-optimal partitioning algorithm to find a Pareto-optimal partition based on clients' preference profiles. At the upper-level DualGFL, we formulate a multi-attribute auction game with resource constraints and derive equilibrium bids to maximize coalitions' winning probabilities and profits. A greedy algorithm is proposed to maximize the utility of the central server. Extensive experiments on real-world datasets demonstrate DualGFL's effectiveness in improving both server utility and client utility.
Abstract:Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean images. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount of parameters and are computationally expensive to train. In this paper, we develop a dilated residual CNN for Gaussian image denoising. Compared with the recently proposed residual denoiser, our method can achieve comparable performance with less computational cost. Specifically, we enlarge receptive field by adopting dilated convolution in residual network, and the dilation factor is set to a certain value. We utilize appropriate zero padding to make the dimension of the output the same as the input. It has been proven that the expansion of receptive field can boost the CNN performance in image classification, and we further demonstrate that it can also lead to competitive performance for denoising problem. Moreover, we present a formula to calculate receptive field size when dilated convolution is incorporated. Thus, the change of receptive field can be interpreted mathematically. To validate the efficacy of our approach, we conduct extensive experiments for both gray and color image denoising with specific or randomized noise levels. Both of the quantitative measurements and the visual results of denoising are promising comparing with state-of-the-art baselines.
Abstract:Collaborative filtering is a rapidly advancing research area. Every year several new techniques are proposed and yet it is not clear which of the techniques work best and under what conditions. In this paper we conduct a study comparing several collaborative filtering techniques -- both classic and recent state-of-the-art -- in a variety of experimental contexts. Specifically, we report conclusions controlling for number of items, number of users, sparsity level, performance criteria, and computational complexity. Our conclusions identify what algorithms work well and in what conditions, and contribute to both industrial deployment collaborative filtering algorithms and to the research community.
Abstract:Recommendation systems are emerging as an important business application with significant economic impact. Currently popular systems include Amazon's book recommendations, Netflix's movie recommendations, and Pandora's music recommendations. In this paper we address the problem of estimating probabilities associated with recommendation system data using non-parametric kernel smoothing. In our estimation we interpret missing items as randomly censored observations and obtain efficient computation schemes using combinatorial properties of generating functions. We demonstrate our approach with several case studies involving real world movie recommendation data. The results are comparable with state-of-the-art techniques while also providing probabilistic preference estimates outside the scope of traditional recommender systems.