Abstract:Recent advances in neuroscience have elucidated the crucial role of coordinated brain region activities during cognitive tasks. To explore the complexity, we introduce the MEEG dataset, a comprehensive multi-modal music-induced electroencephalogram (EEG) dataset and the Attention-based Temporal Learner with Dynamic Graph Neural Network (AT-DGNN), a novel framework for EEG-based emotion recognition. The MEEG dataset captures a wide range of emotional responses to music, enabling an in-depth analysis of brainwave patterns in musical contexts. The AT-DGNN combines an attention-based temporal learner with a dynamic graph neural network (DGNN) to accurately model the local and global graph dynamics of EEG data across varying brain network topology. Our evaluations show that AT-DGNN achieves superior performance, with an accuracy (ACC) of 83.06\% in arousal and 85.31\% in valence, outperforming state-of-the-art (SOTA) methods on the MEEG dataset. Comparative analyses with traditional datasets like DEAP highlight the effectiveness of our approach and underscore the potential of music as a powerful medium for emotion induction. This study not only advances our understanding of the brain emotional processing, but also enhances the accuracy of emotion recognition technologies in brain-computer interfaces (BCI), leveraging both graph-based learning and the emotional impact of music. The source code and dataset are available at \textit{https://github.com/xmh1011/AT-DGNN}.
Abstract:The evolving paradigm of Large Language Model-based Recommendation (LLMRec) customizes Large Language Models (LLMs) through parameter-efficient fine-tuning (PEFT) using recommendation data. The inclusion of user data in LLMs raises privacy concerns. To protect users, the unlearning process in LLMRec, specifically removing unusable data (e.g., historical behaviors) from established LLMRec models, becomes crucial. However, existing unlearning methods are insufficient for the unique characteristics of LLM-Rec, mainly due to high computational costs or incomplete data erasure. In this study, we introduce the Adapter Partition and Aggregation (APA) framework for exact and efficient unlearning while maintaining recommendation performance. APA achieves this by establishing distinct adapters for partitioned training data shards and retraining only the adapters impacted by unusable data for unlearning. To preserve recommendation performance and mitigate considerable inference costs, APA employs parameter-level adapter aggregation with sample-adaptive attention for individual testing samples. Extensive experiments substantiate the effectiveness and efficiency of our proposed framework