Abstract:Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs.To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://anonymous.4open.science/r/FMNet-3CE5.
Abstract:Metal defect detection is critical in industrial quality assurance, yet existing methods struggle with grayscale variations and complex defect states, limiting its robustness. To address these challenges, this paper proposes a Self-Adaptive Gamma Context-Aware SSM-based model(GCM-DET). This advanced detection framework integrating a Dynamic Gamma Correction (GC) module to enhance grayscale representation and optimize feature extraction for precise defect reconstruction. A State-Space Search Management (SSM) architecture captures robust multi-scale features, effectively handling defects of varying shapes and scales. Focal Loss is employed to mitigate class imbalance and refine detection accuracy. Additionally, the CD5-DET dataset is introduced, specifically designed for port container maintenance, featuring significant grayscale variations and intricate defect patterns. Experimental results demonstrate that the proposed model achieves substantial improvements, with mAP@0.5 gains of 27.6\%, 6.6\%, and 2.6\% on the CD5-DET, NEU-DET, and GC10-DET datasets.
Abstract:Incorrect boundary division, complex semantic representation, and differences in pronunciation and meaning often lead to errors in Chinese Named Entity Recognition(CNER). To address these issues, this paper proposes HREB-CRF framework: Hierarchical Reduced-bias EMA with CRF. The proposed method amplifies word boundaries and pools long text gradients through exponentially fixed-bias weighted average of local and global hierarchical attention. Experimental results on the MSRA, Resume, and Weibo datasets show excellent in F1, outperforming the baseline model by 1.1\%, 1.6\%, and 9.8\%. The significant improvement in F1 shows evidences of strong effectiveness and robustness of approach in CNER tasks.