Abstract:In sequential recommendation (SR), neural models have been actively explored due to their remarkable performance, but they suffer from inefficiency inherent to their complexity. On the other hand, linear SR models exhibit high efficiency and achieve competitive or superior accuracy compared to neural models. However, they solely deal with the sequential order of items (i.e., sequential information) and overlook the actual timestamp (i.e., temporal information). It is limited to effectively capturing various user preference drifts over time. To address this issue, we propose a novel linear SR model, named TemporAl LinEar item-item model (TALE), incorporating temporal information while preserving training/inference efficiency, with three key components. (i) Single-target augmentation concentrates on a single target item, enabling us to learn the temporal correlation for the target item. (ii) Time interval-aware weighting utilizes the actual timestamp to discern the item correlation depending on time intervals. (iii) Trend-aware normalization reflects the dynamic shift of item popularity over time. Our empirical studies show that TALE outperforms ten competing SR models by up to 18.71% gains on five benchmark datasets. It also exhibits remarkable effectiveness in evaluating long-tail items by up to 30.45% gains. The source code is available at https://github.com/psm1206/TALE.
Abstract:Collaborative filtering (CF) is a pivotal technique in modern recommender systems. The learning process of CF models typically consists of three components: interaction encoder, loss function, and negative sampling. Although many existing studies have proposed various CF models to design sophisticated interaction encoders, recent work shows that simply reformulating the loss functions can achieve significant performance gains. This paper delves into analyzing the relationship among existing loss functions. Our mathematical analysis reveals that the previous loss functions can be interpreted as alignment and uniformity functions: (i) the alignment matches user and item representations, and (ii) the uniformity disperses user and item distributions. Inspired by this analysis, we propose a novel loss function that improves the design of alignment and uniformity considering the unique patterns of datasets called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts the significance between user and item uniformities to reflect the inherent characteristics of datasets. Extensive experimental results show that MF and LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF models with various loss functions on three public datasets.
Abstract:Because implicit user feedback for the collaborative filtering (CF) models is biased toward popular items, CF models tend to yield recommendation lists with popularity bias. Previous studies have utilized inverse propensity weighting (IPW) or causal inference to mitigate this problem. However, they solely employ pointwise or pairwise loss functions and neglect to adopt a contrastive loss function for learning meaningful user and item representations. In this paper, we propose Unbiased ConTrastive Representation Learning (uCTRL), optimizing alignment and uniformity functions derived from the InfoNCE loss function for CF models. Specifically, we formulate an unbiased alignment function used in uCTRL. We also devise a novel IPW estimation method that removes the bias of both users and items. Despite its simplicity, uCTRL equipped with existing CF models consistently outperforms state-of-the-art unbiased recommender models, up to 12.22% for Recall@20 and 16.33% for NDCG@20 gains, on four benchmark datasets.