Abstract:Rapid advancements of large language model (LLM) technologies led to the introduction of powerful open-source instruction-tuned LLMs that have the same text generation quality as the state-of-the-art counterparts such as GPT-4. While the emergence of such models accelerates the adoption of LLM technologies in sensitive-information environments the authors of such models don not disclose the training data necessary for replication of the results thus making the achievements model-exclusive. Since those open-source models are also multilingual this in turn reduces the benefits of training a language specific LLMs as improved inference computation efficiency becomes the only guaranteed advantage of such costly procedure. More cost-efficient options such as vocabulary extension and subsequent continued pre-training are also inhibited by the lack of access to high-quality instruction-tuning data since it is the major factor behind the resulting LLM task-solving capabilities. To address the limitations and cut the costs of the language adaptation pipeline we propose Learned Embedding Propagation (LEP). Unlike existing approaches our method has lower training data size requirements due to minimal impact on existing LLM knowledge which we reinforce using novel ad-hoc embedding propagation procedure that allows to skip the instruction-tuning step and instead implant the new language knowledge directly into any existing instruct-tuned variant. We evaluated four Russian vocabulary adaptations for LLaMa-3-8B and Mistral-7B, showing that LEP is competitive with traditional instruction-tuning methods, achieving performance comparable to OpenChat 3.5 and LLaMa-3-8B-Instruct, with further improvements via self-calibration and continued tuning enhancing task-solving capabilities.
Abstract:This article investigates a zero-shot approach to hypernymy prediction using large language models (LLMs). The study employs a method based on text probability calculation, applying it to various generated prompts. The experiments demonstrate a strong correlation between the effectiveness of language model prompts and classic patterns, indicating that preliminary prompt selection can be carried out using smaller models before moving to larger ones. We also explore prompts for predicting co-hyponyms and improving hypernymy predictions by augmenting prompts with additional information through automatically identified co-hyponyms. An iterative approach is developed for predicting higher-level concepts, which further improves the quality on the BLESS dataset (MAP = 0.8).
Abstract:Latest instruction-tuned large language models (LLM) show great results on various tasks, however, they often face performance degradation for non-English input. There is evidence that the reason lies in inefficient tokenization caused by low language representation in pre-training data which hinders the comprehension of non-English instructions, limiting the potential of target language instruction-tuning. In this work we investigate the possibility of addressing the issue with vocabulary substitution in the context of LLaMa Russian language adaptation. We explore three variants of vocabulary adaptation and test their performance on Saiga instruction-tuning and fine-tuning on Russian Super Glue benchmark. The results of automatic evaluation show that vocabulary substitution not only improves the model's quality in Russian but also accelerates fine-tuning (35%) and inference (up to 60%) while reducing memory consumption. Additional human evaluation of the instruction-tuned models demonstrates that models with Russian-adapted vocabulary generate answers with higher user preference than the original Saiga-LLaMa model.
Abstract:Knowledge graphs such as DBpedia, Freebase or Wikidata always contain a taxonomic backbone that allows the arrangement and structuring of various concepts in accordance with the hypo-hypernym ("class-subclass") relationship. With the rapid growth of lexical resources for specific domains, the problem of automatic extension of the existing knowledge bases with new words is becoming more and more widespread. In this paper, we address the problem of taxonomy enrichment which aims at adding new words to the existing taxonomy. We present a new method that allows achieving high results on this task with little effort. It uses the resources which exist for the majority of languages, making the method universal. We extend our method by incorporating deep representations of graph structures like node2vec, Poincar\'e embeddings, GCN etc. that have recently demonstrated promising results on various NLP tasks. Furthermore, combining these representations with word embeddings allows us to beat the state of the art. We conduct a comprehensive study of the existing approaches to taxonomy enrichment based on word and graph vector representations and their fusion approaches. We also explore the ways of using deep learning architectures to extend the taxonomic backbones of knowledge graphs. We create a number of datasets for taxonomy extension for English and Russian. We achieve state-of-the-art results across different datasets and provide an in-depth error analysis of mistakes.