Abstract:Integrating machine learning into Automated Control Systems (ACS) enhances decision-making in industrial process management. One of the limitations to the widespread adoption of these technologies in industry is the vulnerability of neural networks to adversarial attacks. This study explores the threats in deploying deep learning models for fault diagnosis in ACS using the Tennessee Eastman Process dataset. By evaluating three neural networks with different architectures, we subject them to six types of adversarial attacks and explore five different defense methods. Our results highlight the strong vulnerability of models to adversarial samples and the varying effectiveness of defense strategies. We also propose a novel protection approach by combining multiple defense methods and demonstrate it's efficacy. This research contributes several insights into securing machine learning within ACS, ensuring robust fault diagnosis in industrial processes.
Abstract:Social networks crawling is in the focus of active research the last years. One of the challenging task is to collect target nodes in an initially unknown graph given a budget of crawling steps. Predicting a node property based on its partially known neighbourhood is at the heart of a successful crawler. In this paper we adopt graph neural networks for this purpose and show they are competitive to traditional classifiers and are better for individual cases. Additionally we suggest a training sample boosting technique, which helps to diversify the training set at early stages of crawling and thus improves the predictor quality. The experimental study on three types of target set topology indicates GNN based approach has a potential in crawling task, especially in the case of distributed target nodes.