Abstract:High-order Graph Neural Networks (HO-GNNs) have been developed to infer consistent latent spaces in the heterophilic regime, where the label distribution is not correlated with the graph structure. However, most of the existing HO-GNNs are hop-based, i.e., they rely on the powers of the transition matrix. As a result, these architectures are not fully reactive to the classification loss and the achieved structural filters have static supports. In other words, neither the filters' supports nor their coefficients can be learned with these networks. They are confined, instead, to learn combinations of filters. To address the above concerns, we propose Diffusion-jump GNNs a method relying on asymptotic diffusion distances that operates on jumps. A diffusion-pump generates pairwise distances whose projections determine both the support and coefficients of each structural filter. These filters are called jumps because they explore a wide range of scales in order to find bonds between scattered nodes with the same label. Actually, the full process is controlled by the classification loss. Both the jumps and the diffusion distances react to classification errors (i.e. they are learnable). Homophiliation, i.e., the process of learning piecewise smooth latent spaces in the heterophilic regime, is formulated as a Dirichlet problem: the known labels determine the border nodes and the diffusion-pump ensures a minimal deviation of the semi-supervised grouping from a canonical unsupervised grouping. This triggers the update of both the diffusion distances and, consequently, the jumps in order to minimize the classification error. The Dirichlet formulation has several advantages. It leads to the definition of structural heterophily, a novel measure beyond edge heterophily. It also allows us to investigate links with (learnable) diffusion distances, absorbing random walks and stochastic diffusion.
Abstract:Human perception, memory and decision-making are impacted by tens of cognitive biases and heuristics that influence our actions and decisions. Despite the pervasiveness of such biases, they are generally not leveraged by today's Artificial Intelligence (AI) systems that model human behavior and interact with humans. In this theoretical paper, we claim that the future of human-machine collaboration will entail the development of AI systems that model, understand and possibly replicate human cognitive biases. We propose the need for a research agenda on the interplay between human cognitive biases and Artificial Intelligence. We categorize existing cognitive biases from the perspective of AI systems, identify three broad areas of interest and outline research directions for the design of AI systems that have a better understanding of our own biases.