Abstract:Collecting sufficient labelled training data for health and medical problems is difficult (Antropova, et al., 2018). Also, missing values are unavoidable in health and medical datasets and tackling the problem arising from the inadequate instances and missingness is not straightforward (Snell, et al. 2017, Sterne, et al. 2009). However, machine learning algorithms have achieved significant success in many real-world healthcare problems, such as regression and classification and these techniques could possibly be a way to resolve the issues.
Abstract:Clinical decision support using data mining techniques offers more intelligent way to reduce the decision error in the last few years. However, clinical datasets often suffer from high missingness, which adversely impacts the quality of modelling if handled improperly. Imputing missing values provides an opportunity to resolve the issue. Conventional imputation methods adopt simple statistical analysis, such as mean imputation or discarding missing cases, which have many limitations and thus degrade the performance of learning. This study examines a series of machine learning based imputation methods and suggests an efficient approach to in preparing a good quality breast cancer (BC) dataset, to find the relationship between BC treatment and chemotherapy-related amenorrhoea, where the performance is evaluated with the accuracy of the prediction.