Abstract:We present BenCzechMark (BCM), the first comprehensive Czech language benchmark designed for large language models, offering diverse tasks, multiple task formats, and multiple evaluation metrics. Its scoring system is grounded in statistical significance theory and uses aggregation across tasks inspired by social preference theory. Our benchmark encompasses 50 challenging tasks, with corresponding test datasets, primarily in native Czech, with 11 newly collected ones. These tasks span 8 categories and cover diverse domains, including historical Czech news, essays from pupils or language learners, and spoken word. Furthermore, we collect and clean BUT-Large Czech Collection, the largest publicly available clean Czech language corpus, and use it for (i) contamination analysis, (ii) continuous pretraining of the first Czech-centric 7B language model, with Czech-specific tokenization. We use our model as a baseline for comparison with publicly available multilingual models. Lastly, we release and maintain a leaderboard, with existing 44 model submissions, where new model submissions can be made at https://huggingface.co/spaces/CZLC/BenCzechMark.
Abstract:This article presents a comprehensive evaluation of 7 off-the-shelf document retrieval models: Splade, Plaid, Plaid-X, SimCSE, Contriever, OpenAI ADA and Gemma2 chosen to determine their performance on the Czech retrieval dataset DaReCzech. The primary objective of our experiments is to estimate the quality of modern retrieval approaches in the Czech language. Our analyses include retrieval quality, speed, and memory footprint. Secondly, we analyze whether it is better to use the model directly in Czech text, or to use machine translation into English, followed by retrieval in English. Our experiments identify the most effective option for Czech information retrieval. The findings revealed notable performance differences among the models, with Gemma22 achieving the highest precision and recall, while Contriever performing poorly. Conclusively, SPLADE and PLAID models offered a balance of efficiency and performance.