Abstract:Chest X-rays play a pivotal role in diagnosing respiratory diseases such as pneumonia, tuberculosis, and COVID-19, which are prevalent and present unique diagnostic challenges due to overlapping visual features and variability in image quality. Severe class imbalance and the complexity of medical images hinder automated analysis. This study leverages deep learning techniques, including transfer learning on pre-trained models (AlexNet, ResNet, and InceptionNet), to enhance disease detection and classification. By fine-tuning these models and incorporating focal loss to address class imbalance, significant performance improvements were achieved. Grad-CAM visualizations further enhance model interpretability, providing insights into clinically relevant regions influencing predictions. The InceptionV3 model, for instance, achieved a 28% improvement in AUC and a 15% increase in F1-Score. These findings highlight the potential of deep learning to improve diagnostic workflows and support clinical decision-making.
Abstract:This paper presents Conformer-1, an end-to-end Automatic Speech Recognition (ASR) model trained on an extensive dataset of 570k hours of speech audio data, 91% of which was acquired from publicly available sources. To achieve this, we perform Noisy Student Training after generating pseudo-labels for the unlabeled public data using a strong Conformer RNN-T baseline model. The addition of these pseudo-labeled data results in remarkable improvements in relative Word Error Rate (WER) by 11.5% and 24.3% for our asynchronous and realtime models, respectively. Additionally, the model is more robust to background noise owing to the addition of these data. The results obtained in this study demonstrate that the incorporation of pseudo-labeled publicly available data is a highly effective strategy for improving ASR accuracy and noise robustness.