Abstract:Nowadays, unmanned aerial vehicles (UAVs) are commonly used in search and rescue scenarios to gather information in the search area. The automatic identification of the person searched for in aerial footage could increase the autonomy of such systems, reduce the search time, and thus increase the missed person's chances of survival. In this paper, we present a novel approach to perform semantically conditioned open vocabulary object tracking that is specifically designed to cope with the limitations of UAV hardware. Our approach has several advantages. It can run with verbal descriptions of the missing person, e.g., the color of the shirt, it does not require dedicated training to execute the mission and can efficiently track a potentially moving person. Our experimental results demonstrate the versatility and efficacy of our approach.
Abstract:In this paper, we propose VLM-Vac, a novel framework designed to enhance the autonomy of smart robot vacuum cleaners. Our approach integrates the zero-shot object detection capabilities of a Vision-Language Model (VLM) with a Knowledge Distillation (KD) strategy. By leveraging the VLM, the robot can categorize objects into actionable classes -- either to avoid or to suck -- across diverse backgrounds. However, frequently querying the VLM is computationally expensive and impractical for real-world deployment. To address this issue, we implement a KD process that gradually transfers the essential knowledge of the VLM to a smaller, more efficient model. Our real-world experiments demonstrate that this smaller model progressively learns from the VLM and requires significantly fewer queries over time. Additionally, we tackle the challenge of continual learning in dynamic home environments by exploiting a novel experience replay method based on language-guided sampling. Our results show that this approach is not only energy-efficient but also surpasses conventional vision-based clustering methods, particularly in detecting small objects across diverse backgrounds.
Abstract:In this paper, we propose LAN-grasp, a novel approach towards more appropriate semantic grasping. We use foundation models to provide the robot with a deeper understanding of the objects, the right place to grasp an object, or even the parts to avoid. This allows our robot to grasp and utilize objects in a more meaningful and safe manner. We leverage the combination of a Large Language Model, a Vision Language Model, and a traditional grasp planner to generate grasps demonstrating a deeper semantic understanding of the objects. We first prompt the Large Language Model about which object part is appropriate for grasping. Next, the Vision Language Model identifies the corresponding part in the object image. Finally, we generate grasp proposals in the region proposed by the Vision Language Model. Building on foundation models provides us with a zero-shot grasp method that can handle a wide range of objects without the need for further training or fine-tuning. We evaluated our method in real-world experiments on a custom object data set. We present the results of a survey that asks the participants to choose an object part appropriate for grasping. The results show that the grasps generated by our method are consistently ranked higher by the participants than those generated by a conventional grasping planner and a recent semantic grasping approach.
Abstract:Visual place recognition is essential for vision-based robot localization and SLAM. Despite the tremendous progress made in recent years, place recognition in changing environments remains challenging. A promising approach to cope with appearance variations is to leverage high-level semantic features like objects or place categories. In this paper, we propose FM-Loc which is a novel image-based localization approach based on Foundation Models that uses the Large Language Model GPT-3 in combination with the Visual-Language Model CLIP to construct a semantic image descriptor that is robust to severe changes in scene geometry and camera viewpoint. We deploy CLIP to detect objects in an image, GPT-3 to suggest potential room labels based on the detected objects, and CLIP again to propose the most likely location label. The object labels and the scene label constitute an image descriptor that we use to calculate a similarity score between the query and database images. We validate our approach on real-world data that exhibit significant changes in camera viewpoints and object placement between the database and query trajectories. The experimental results demonstrate that our method is applicable to a wide range of indoor scenarios without the need for training or fine-tuning.