Technical University of Munich
Abstract:In this work, we propose an approach to robust precoder design based on a minorization maximization technique that optimizes a surrogate function of the achievable spectral efficiency. The presented method accounts for channel estimation errors during the optimization process and is, hence, robust in the case of imperfect channel state information (CSI). Additionally, the design method is adapted such that the need for a line search to satisfy the power constraint is eliminated, that significantly accelerates the precoder computation. Simulation results demonstrate that the proposed robust precoding method is competitive with weighted minimum mean square error (WMMSE) precoding, in particular, under imperfect CSI scenarios.
Abstract:In this work, we propose a low-cost rate splitting (RS) technique for a multi-user multiple-input single-output (MISO) system operating in frequency division duplex (FDD) mode. The proposed iterative optimisation algorithm only depends on the second-order statistical channel knowledge and the pilot training matrix. Additionally, it offers a closed-form solution in each update step. This reduces the design complexity of the system drastically as we only need to optimise the precoding filters in every coherence interval of the covariance matrices, instead of doing that in every channel state information (CSI) coherence interval. Moreover, since the algorithm is based on closed-form solutions, there is no need for interior point solvers like CVX, which are typically required in most state-of-the-art techniques.
Abstract:Rate splitting multiple access (RSMA) and reconfigurable intelligent surface (RIS) are two prospective technologies for improving the spectral and energy efficiency in future wireless communication systems. In this work, we investigate a rate splitting (RS) technique for an RIS-aided system in the presence of only statistical channel knowledge. We propose an algorithm with a quasi closed-form solution based only on the second-order channel statistics, which reduces the design complexity of the system as it does not require estimation of the channel state information (CSI) and optimisation of the precoding filters and phase shifts of the RIS in every channel coherence interval.
Abstract:We propose to use Tomlinson-Harashima Precoding (THP) for the reconfigurable intelligent surface (RIS)-aided multiple-input multiple-output (MIMO) broadcast channel where we assume a line of sight (LOS) connection between the base station (BS) and the RIS. In this scenario, nonlinear precoding, like THP or dirty paper coding (DPC), has certain advantages compared to linear precoding as it is more robust in case the BS-RIS channel is not orthogonal to the direct channel. Additionally, THP and DPC allow a simple phase shift optimization which is in strong contrast to linear precoding for which the solution is quite intricate. Besides being difficult to optimize, it can be shown that linear precoding has fundamental limitations for statistical and random phase shifts which do not hold for nonlinear precoding. Moreover, we show that the advantages of THP/DPC are especially pronounced for discrete phase shifts.
Abstract:In this work, we propose a Gaussian mixture model (GMM)-based pilot design scheme for downlink (DL) channel estimation in single- and multi-user multiple-input multiple-output (MIMO) frequency division duplex (FDD) systems. In an initial offline phase, the GMM captures prior information during training, which is then utilized for pilot design. In the single-user case, the GMM is utilized to construct a codebook of pilot matrices and, once shared with the mobile terminal (MT), can be employed to determine a feedback index at the MT. This index selects a pilot matrix from the constructed codebook, eliminating the need for online pilot optimization. We further establish a sum conditional mutual information (CMI)-based pilot optimization framework for multi-user MIMO (MU-MIMO) systems. Based on the established framework, we utilize the GMM for pilot matrix design in MU-MIMO systems. The analytic representation of the GMM enables the adaptation to any signal-to-noise ratio (SNR) level and pilot configuration without re-training. Additionally, an adaption to any number of MTs is facilitated. Extensive simulations demonstrate the superior performance of the proposed pilot design scheme compared to state-of-the-art approaches. The performance gains can be exploited, e.g., to deploy systems with fewer pilots.
Abstract:We compare dirty paper coding (DPC) and linear precoding methods in a reconfigurable intelligent surface (RIS)- aided high-signal-to-noise ratio (SNR) scenario, where the channel between the base station (BS) and the RIS is dominated by a line-of-sight (LOS) component. Furthermore, we consider two groups of users where one group can be efficiently served by the BS, whereas the other one has a negligible direct channel and has to be served via the RIS. These considerations allow us to analytically show fundamental differences between DPC and linear methods. In particular, our analysis addresses two essential aspects, i.e., the orthogonality of the BS-RIS channel with the direct channel and an interference term that is present only for linear precoding techniques. The interference term leads to strong limitations for the linear method, especially for random or statistical phase shifts. Moreover, we discuss under which circumstances this interference term is negligible and in which scenarios DPC and linear precoding lead to the same performance.
Abstract:Reconfigurable intelligent surface (RIS) is a promising technology to enhance the spectral and energy efficiency in a wireless communication system. The design of the phase shifts of an RIS in every channel coherence interval demands a huge training overhead, making its deployment practically infeasible. The design complexity can be significantly reduced by exploiting the second-order statistics of the channels. This paper is the extension of our previous work to the design of an RIS for the multi-user setup, where we employ maximisation of the lower bound of the achievable sum-rate of the users. Unlike for the single-user case, obtaining a closed-form expression for the update of the filters and phase shifts is more challenging in the multi-user case. We resort to the fractional programming (FP) approach and the non-convex block coordinate descent (BCD) method to solve the optimisation problem. As the phase shifts of the RIS obtained by the proposed algorithms are based on the statistical channel knowledge, they do not need to be updated in every channel coherence interval.
Abstract:In this work, we propose to utilize Gaussian mixture models (GMMs) to design pilots for downlink (DL) channel estimation in frequency division duplex (FDD) systems. The GMM captures prior information during training that is leveraged to design a codebook of pilot matrices in an initial offline phase. Once shared with the mobile terminal (MT), the GMM is utilized to determine a feedback index at the MT in the online phase. This index selects a pilot matrix from a codebook, eliminating the need for online pilot optimization. The GMM is further used for DL channel estimation at the MT via observation-dependent linear minimum mean square error (LMMSE) filters, parametrized by the GMM. The analytic representation of the GMM allows adaptation to any signal-to-noise ratio (SNR) level and pilot configuration without re-training. With extensive simulations, we demonstrate the superior performance of the proposed GMM-based pilot scheme compared to state-of-the-art approaches.
Abstract:In this work, we develop an efficient precoding strategy for a multi-user multiple-input-single output (MU MISO) system operating in frequency-division-duplex (FDD) mode, where rate splitting multiple access (RSMA) is implemented. To this end, we consider one-layer RS and show its significant impact on the system performance, specifically in the case where the channel state information (CSI) is incomplete at the transmitter. Based on a lower bound on the achievable rate that takes into account the CSI errors, we establish an augmented weighted average mean squared error (AWAMSE) algorithm for the RS setup denoted by AWAMSE-RS, where even the updates for the common and the private precoders are computed via analytical expressions, hence circumventing the need for interior-point methods. Simulation results validate the efficiency of our approach in terms of computational time and its competitiveness in terms of the achievable system throughput compared to state-of-the-art methods and non-RS setups.
Abstract:This work proposes a novel channel estimator based on diffusion models (DMs), one of the currently top-rated generative models. Contrary to related works utilizing generative priors, a lightweight convolutional neural network (CNN) with positional embedding of the signal-to-noise ratio (SNR) information is designed by learning the channel distribution in the sparse angular domain. Combined with an estimation strategy that avoids stochastic resampling and truncates reverse diffusion steps that account for lower SNR than the given pilot observation, the resulting DM estimator has both low complexity and memory overhead. Numerical results exhibit better performance than state-of-the-art channel estimators utilizing generative priors.