Sandia National Laboratory, Albuquerque, New Mexico, 87123, USA
Abstract:This paper will examine what makes a being intelligent, whether that be a biological being or an artificial silicon being on a computer. Special attention will be paid to the being having the ability to characterize and control a collective system of many identical conservative sub-systems conservatively interacting. The essence of intelligence will be found to be the golden rule -- "the collective acts as one" or "knowing the global consequences of local actions". The flow of the collective is a small set of twinkling textures, that are governed by a puppeteer who is pulling a small number of strings according to a geodesic motion of least action, determined by the symmetries. Controlling collective conservative systems is difficult and has historically been done by adding significant viscosity to the system to stabilize the desirable meta stable equilibriums of maximum performance, but it degrades or destroys them in the process. There is an alternative. Once the optimum twinkling textures of the meta stable equilibriums are identified by the intelligent being (that is the collective system is characterized), the collective system can be moved by the intelligent being to the optimum twinkling textures, then quickly vibrated by the intelligent being according to the textures so that the collective system remains at the meta stable equilibrium. Well educated intelligence knows the global consequences of its local actions so that it will not take short term actions that will lead to poor long term outcomes. In contrast, trained intelligence or trained stupidity will optimize its short term actions, leading to poor long term outcomes. Well educated intelligence is inherently good, but trained stupidity is inherently evil and should be feared. Particular attention is paid to the control and optimization of economic and social collectives.
Abstract:This paper fundamentally reformulates economic and financial theory to include electronic currencies. The valuation of the electronic currencies will be based on macroeconomic theory and the fundamental equation of monetary policy, not the microeconomic theory of discounted cash flows. The view of electronic currency as a transactional equity associated with tangible assets of a sub-economy will be developed, in contrast to the view of stock as an equity associated mostly with intangible assets of a sub-economy. The view will be developed of the electronic currency management firm as an entity responsible for coordinated monetary (electronic currency supply and value stabilization) and fiscal (investment and operational) policies of a substantial (for liquidity of the electronic currency) sub-economy. The risk model used in the valuations and the decision-making will not be the ubiquitous, yet inappropriate, exponential risk model that leads to discount rates, but will be multi time scale models that capture the true risk. The decision-making will be approached from the perspective of true systems control based on a system response function given by the multi scale risk model and system controllers that utilize the Deep Reinforcement Learning, Generative Pretrained Transformers, and other methods of Artificial Intelligence (DRL/GPT/AI). Finally, the sub-economy will be viewed as a nonlinear complex physical system with both stable equilibriums that are associated with short-term exploitation, and unstable equilibriums that need to be stabilized with active nonlinear control based on the multi scale system response functions and DRL/GPT/AI.
Abstract:We propose a noise-resilient deep reconstruction algorithm for X-ray tomography. Our approach shows strong noise resilience without obtaining noisy training examples. The advantages of our framework may further enable low-photon tomographic imaging.
Abstract:X-ray tomography is capable of imaging the interior of objects in three dimensions non-invasively, with applications in biomedical imaging, materials science, electronic inspection, and other fields. The reconstruction process can be an ill-conditioned inverse problem, requiring regularization to obtain satisfactory reconstructions. Recently, deep learning has been adopted for tomographic reconstruction. Unlike iterative algorithms which require a distribution that is known a priori, deep reconstruction networks can learn a prior distribution through sampling the training distributions. In this work, we develop a Physics-assisted Generative Adversarial Network (PGAN), a two-step algorithm for tomographic reconstruction. In contrast to previous efforts, our PGAN utilizes maximum-likelihood estimates derived from the measurements to regularize the reconstruction with both known physics and the learned prior. Synthetic objects with spatial correlations are integrated circuits (IC) from a proposed model CircuitFaker. Compared with maximum-likelihood estimation, PGAN can reduce the photon requirement with limited projection angles to achieve a given error rate. We further attribute the improvement to the learned prior by reconstructing objects created without spatial correlations. The advantages of using a prior from deep learning in X-ray tomography may further enable low-photon nanoscale imaging.
Abstract:Limited-angle X-ray tomography reconstruction is an ill-conditioned inverse problem in general. Especially when the projection angles are limited and the measurements are taken in a photon-limited condition, reconstructions from classical algorithms such as filtered backprojection may lose fidelity and acquire artifacts due to the missing-cone problem. To obtain satisfactory reconstruction results, prior assumptions, such as total variation minimization and nonlocal image similarity, are usually incorporated within the reconstruction algorithm. In this work, we introduce deep neural networks to determine and apply a prior distribution in the reconstruction process. Our neural networks learn the prior directly from synthetic training samples. The neural nets thus obtain a prior distribution that is specific to the class of objects we are interested in reconstructing. In particular, we used deep generative models with 3D convolutional layers and 3D attention layers which are trained on 3D synthetic integrated circuit (IC) data from a model dubbed CircuitFaker. We demonstrate that, when the projection angles and photon budgets are limited, the priors from our deep generative models can dramatically improve the IC reconstruction quality on synthetic data compared with maximum likelihood estimation. Training the deep generative models with synthetic IC data from CircuitFaker illustrates the capabilities of the learned prior from machine learning. We expect that if the process were reproduced with experimental data, the advantage of the machine learning would persist. The advantages of machine learning in limited angle X-ray tomography may further enable applications in low-photon nanoscale imaging.
Abstract:The morphology of the stagnated plasma resulting from Magnetized Liner Inertial Fusion (MagLIF) is measured by imaging the self-emission x-rays coming from the multi-keV plasma. Equivalent diagnostic response can be generated by integrated radiation-magnetohydrodynamic (rad-MHD) simulations from programs such as HYDRA and GORGON. There have been only limited quantitative ways to compare the image morphology, that is the texture, of simulations and experiments. We have developed a metric of image morphology based on the Mallat Scattering Transformation (MST), a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric is designed, demonstrated, and refined by classifying ensembles (i.e., classes) of synthetic stagnation images, and by regressing an ensemble of synthetic stagnation images to the morphology (i.e., model) parameters used to generate the synthetic images. We use this metric to quantitatively compare simulations to experimental images, experimental images to each other, and to estimate the morphological parameters of the experimental images with uncertainty. This coordinate space has proved very adept at doing a sophisticated relative background subtraction in the MST space. This was needed to compare the experimental self emission images to the rad-MHD simulation images.