Abstract:Mathematical morphology, a field within image processing, includes various filters that either highlight, modify, or eliminate certain information in images based on an application's needs. Key operations in these filters are dilation and erosion, which determine the supremum or infimum for each pixel with respect to an order of the tonal values over a subset of the image surrounding the pixel. This subset is formed by a structuring element at the specified pixel, which weighs the tonal values. Unlike grey-scale morphology, where tonal order is clearly defined, colour morphology lacks a definitive total order. As no method fully meets all desired properties for colour, because of this difficulty, some limitations are always present. This paper shows how to combine the theory of the log-exp-supremum of colour matrices that employs the Loewner semi-order with a well-known colour distance approach in the form of a pre-ordering. The log-exp-supremum will therefore serve as the reference colour for determining the colour distance. To the resulting pre-ordering with respect to these distance values, we add a lexicographic cascade to ensure a total order and a unique result. The objective of this approach is to identify the original colour within the structuring element that most closely resembles a supremum, which fulfils a number of desired properties. Consequently, this approach avoids the false-colour problem. The behaviour of the introduced operators is illustrated by application examples of dilation and closing for synthetic and natural images.
Abstract:In this paper we study the sparse coding problem in the context of sparse dictionary learning for image recovery. To this end, we consider and compare several state-of-the-art sparse optimization methods constructed using the shrinkage operation. As the mathematical setting of these methods, we consider an online approach as algorithmical basis together with the basis pursuit denoising problem that arises by the convex optimization approach to the dictionary learning problem. By a dedicated construction of datasets and corresponding dictionaries, we study the effect of enlarging the underlying learning database on reconstruction quality making use of several error measures. Our study illuminates that the choice of the optimization method may be practically important in the context of availability of training data. In the context of different settings for training data as may be considered part of our study, we illuminate the computational efficiency of the assessed optimization methods.
Abstract:AI-based object detection, and efforts to explain and investigate their characteristics, is a topic of high interest. The impact of, e.g., complex background structures with similar appearances as the objects of interest, on the detection accuracy and, beforehand, the necessary dataset composition are topics of ongoing research. In this paper, we present a systematic investigation of background influences and different features of the object to be detected. The latter includes various materials and surfaces, partially transparent and with shiny reflections in the context of an Industry 4.0 learning factory. Different YOLOv8 models have been trained for each of the materials on different sized datasets, where the appearance was the only changing parameter. In the end, similar characteristics tend to show different behaviours and sometimes unexpected results. While some background components tend to be detected, others with the same features are not part of the detection. Additionally, some more precise conclusions can be drawn from the results. Therefore, we contribute a challenging dataset with detailed investigations on 92 trained YOLO models, addressing some issues on the detection accuracy and possible overfitting.
Abstract:Mathematical morphology is a part of image processing that uses a window that moves across the image to change certain pixels according to certain operations. The concepts of supremum and infimum play a crucial role here, but it proves challenging to define them generally for higher-dimensional data, such as colour representations. Numerous approaches have therefore been taken to solve this problem with certain compromises. In this paper we will analyse the construction of a new approach, which we have already presented experimentally in paper [Kahra, M., Breu{\ss}, M., Kleefeld, A., Welk, M., DGMM 2024, pp. 325-337]. This is based on a method by Burgeth and Kleefeld [Burgeth, B., Kleefeld, A., ISMM 2013, pp. 243-254], who regard the colours as symmetric $2\times2$ matrices and compare them by means of the Loewner order in a bi-cone through different suprema. However, we will replace the supremum with the LogExp approximation for the maximum instead. This allows us to transfer the associativity of the dilation from the one-dimensional case to the higher-dimensional case. In addition, we will investigate the minimality property and specify a relaxation to ensure that our approach is continuously dependent on the input data.
Abstract:Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric $2\times2$ matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.
Abstract:The computation of correspondences between shapes is a principal task in shape analysis. To this end, methods based on partial differential equations (PDEs) have been established, encompassing e.g. the classic heat kernel signature as well as numerical solution schemes for geometric PDEs. In this work we focus on the latter approach. We consider here several time stepping schemes. The goal of this investigation is to assess, if one may identify a useful property of methods for time integration for the shape analysis context. Thereby we investigate the dependence on time step size, since the class of implicit schemes that are useful candidates in this context should ideally yield an invariant behaviour with respect to this parameter. To this end we study integration of heat and wave equation on a manifold. In order to facilitate this study, we propose an efficient, unified model order reduction framework for these models. We show that specific $l_0$ stable schemes are favourable for numerical shape analysis. We give an experimental evaluation of the methods at hand of classical TOSCA data sets.
Abstract:Sampling is a basic operation in image processing. In classic literature, a morphological sampling theorem has been established, which shows how sampling interacts by morphological operations with image reconstruction. Many aspects of morphological sampling have been investigated for binary images, but only some of them have been explored for grey-value imagery. With this paper, we make a step towards completion of this open matter. By relying on the umbra notion, we show how to transfer classic theorems in binary morphology about the interaction of sampling with the fundamental morphological operations dilation, erosion, opening and closing, to the grey-value setting. In doing this we also extend the theory relating the morphological operations and corresponding reconstructions to use of non-flat structuring elements. We illustrate the theoretical developments at hand of examples.
Abstract:In this paper we consider the fundamental operations dilation and erosion of mathematical morphology. Many powerful image filtering operations are based on their combinations. We establish homomorphism between max-plus semi-ring of integers and subset of polynomials over the field of real numbers. This enables to reformulate the task of computing morphological dilation to that of computing sums and products of polynomials. Therefore, dilation and its dual operation erosion can be computed by convolution of discrete linear signals, which is efficiently accomplished using a Fast Fourier Transform technique. The novel method may deal with non-flat filters and incorporates no restrictions on shape or size of the structuring element, unlike many other fast methods in the field. In contrast to previous fast Fourier techniques it gives exact results and is not an approximation. The new method is in practice particularly suitable for filtering images with small tonal range or when employing large filter sizes. We explore the benefits by investigating an implementation on FPGA hardware. Several experiments demonstrate the exactness and efficiency of the proposed method.
Abstract:Photometric stereo refers to the process to compute the 3D shape of an object using information on illumination and reflectance from several input images from the same point of view. The most often used reflectance model is the Lambertian reflectance, however this does not include specular highlights in input images. In this paper we consider the arising non-linear optimisation problem when employing Blinn-Phong reflectance for modeling specular effects. To this end we focus on the regularising Levenberg-Marquardt scheme. We show how to derive an explicit bound that gives information on the convergence reliability of the method depending on given data, and we show how to gain experimental evidence of numerical correctness of the iteration by making use of the Scherzer condition. The theoretical investigations that are at the heart of this paper are supplemented by some tests with real-world imagery.
Abstract:In context of laser powder bed fusion (L-PBF), it is known that the properties of the final fabricated product highly depend on the temperature distribution and its gradient over the manufacturing plate. In this paper, we propose a novel means to predict the temperature gradient distributions during the printing process by making use of neural networks. This is realized by employing heat maps produced by an optimized printing protocol simulation and used for training a specifically tailored recurrent neural network in terms of a long short-term memory architecture. The aim of this is to avoid extreme and inhomogeneous temperature distribution that may occur across the plate in the course of the printing process. In order to train the neural network, we adopt a well-engineered simulation and unsupervised learning framework. To maintain a minimized average thermal gradient across the plate, a cost function is introduced as the core criteria, which is inspired and optimized by considering the well-known traveling salesman problem (TSP). As time evolves the unsupervised printing process governed by TSP produces a history of temperature heat maps that maintain minimized average thermal gradient. All in one, we propose an intelligent printing tool that provides control over the substantial printing process components for L-PBF, i.e.\ optimal nozzle trajectory deployment as well as online temperature prediction for controlling printing quality.