Misha
Abstract:The paper reflects on the future role of AI in scientific research, with a special focus on turbulence studies, and examines the evolution of AI, particularly through Diffusion Models rooted in non-equilibrium statistical mechanics. It underscores the significant impact of AI on advancing reduced, Lagrangian models of turbulence through innovative use of deep neural networks. Additionally, the paper reviews various other AI applications in turbulence research and outlines potential challenges and opportunities in the concurrent advancement of AI and statistical hydrodynamics. This discussion sets the stage for a future where AI and turbulence research are intricately intertwined, leading to more profound insights and advancements in both fields.
Abstract:This work developed a learning framework for perceptive legged locomotion that combines visual feedback, proprioceptive information, and active gait regulation of foot-ground contacts. The perception requires only one forward-facing camera to obtain the heightmap, and the active regulation of gait paces and traveling velocity are realized through our formulation of CPG-based high-level imitation of foot-ground contacts. Through this framework, an end-user has the ability to command task-level inputs to control different walking speeds and gait frequencies according to the traversal of different terrains, which enables more reliable negotiation with encountered obstacles. The results demonstrated that the learned perceptive locomotion policy followed task-level control inputs with intended behaviors, and was robust in presence of unseen terrains and external force perturbations. A video demonstration can be found at https://youtu.be/OTzlWzDfAe8, and the codebase at https://github.com/jennyzzt/perceptual-locomotion.
Abstract:Codd [Codd 1970] wrote the first paper in which the model of a relational database was proposed. Adleman [Adleman 1994] wrote the first paper in which DNA strands in a test tube were used to solve an instance of the Hamiltonian path problem. From [Adleman 1994], it is obviously indicated that for storing information in molecules of DNA allows for an information density of approximately 1 bit per cubic nm (nanometer) and a dramatic improvement over existing storage media such as video tape which store information at a density of approximately 1 bit per 1012 cubic nanometers. This paper demonstrates that biological operations can be applied to construct bio-molecular databases where data records in relational tables are encoded as DNA strands. In order to achieve the goal, DNA algorithms are proposed to perform eight operations of relational algebra (calculus) on bio-molecular relational databases, which include Cartesian product, union, set difference, selection, projection, intersection, join and division. Furthermore, this work presents clear evidence of the ability of molecular computing to perform data retrieval operations on bio-molecular relational databases.