Abstract:In recent years, various Blind Face Restoration (BFR) techniques were developed. These techniques transform low quality faces suffering from multiple degradations to more realistic and natural face images with high perceptual quality. However, it is crucial for the task of face verification to not only enhance the perceptual quality of the low quality images but also to improve the biometric-utility face quality metrics. Furthermore, preserving the valuable identity information is of great importance. In this paper, we investigate the impact of applying three state-of-the-art blind face restoration techniques namely, GFP-GAN, GPEN and SGPN on the performance of face verification system under very challenging environment characterized by very low quality images. Extensive experimental results on the recently proposed cross-quality LFW database using three state-of-the-art deep face recognition models demonstrate the effectiveness of GFP-GAN in boosting significantly the face verification accuracy.
Abstract:This work summarizes the IJCB Occluded Face Recognition Competition 2022 (IJCB-OCFR-2022) embraced by the 2022 International Joint Conference on Biometrics (IJCB 2022). OCFR-2022 attracted a total of 3 participating teams, from academia. Eventually, six valid submissions were submitted and then evaluated by the organizers. The competition was held to address the challenge of face recognition in the presence of severe face occlusions. The participants were free to use any training data and the testing data was built by the organisers by synthetically occluding parts of the face images using a well-known dataset. The submitted solutions presented innovations and performed very competitively with the considered baseline. A major output of this competition is a challenging, realistic, and diverse, and publicly available occluded face recognition benchmark with well defined evaluation protocols.