Abstract:Person re-identification (re-ID) is the task of matching person images across camera views, which plays an important role in surveillance and security applications. Inspired by great progress of deep learning, deep re-ID models began to be popular and gained state-of-the-art performance. However, recent works found that deep neural networks (DNNs) are vulnerable to adversarial examples, posing potential threats to DNNs based applications. This phenomenon throws a serious question about whether deep re-ID based systems are vulnerable to adversarial attacks. In this paper, we take the first attempt to implement robust physical-world attacks against deep re-ID. We propose a novel attack algorithm, called advPattern, for generating adversarial patterns on clothes, which learns the variations of image pairs across cameras to pull closer the image features from the same camera, while pushing features from different cameras farther. By wearing our crafted "invisible cloak", an adversary can evade person search, or impersonate a target person to fool deep re-ID models in physical world. We evaluate the effectiveness of our transformable patterns on adversaries'clothes with Market1501 and our established PRCS dataset. The experimental results show that the rank-1 accuracy of re-ID models for matching the adversary decreases from 87.9% to 27.1% under Evading Attack. Furthermore, the adversary can impersonate a target person with 47.1% rank-1 accuracy and 67.9% mAP under Impersonation Attack. The results demonstrate that deep re-ID systems are vulnerable to our physical attacks.
Abstract:Federated learning, i.e., a mobile edge computing framework for deep learning, is a recent advance in privacy-preserving machine learning, where the model is trained in a decentralized manner by the clients, i.e., data curators, preventing the server from directly accessing those private data from the clients. This learning mechanism significantly challenges the attack from the server side. Although the state-of-the-art attacking techniques that incorporated the advance of Generative adversarial networks (GANs) could construct class representatives of the global data distribution among all clients, it is still challenging to distinguishably attack a specific client (i.e., user-level privacy leakage), which is a stronger privacy threat to precisely recover the private data from a specific client. This paper gives the first attempt to explore user-level privacy leakage against the federated learning by the attack from a malicious server. We propose a framework incorporating GAN with a multi-task discriminator, which simultaneously discriminates category, reality, and client identity of input samples. The novel discrimination on client identity enables the generator to recover user specified private data. Unlike existing works that tend to interfere the training process of the federated learning, the proposed method works "invisibly" on the server side. The experimental results demonstrate the effectiveness of the proposed attacking approach and the superior to the state-of-the-art.