Abstract:Deepfakes utilise Artificial Intelligence (AI) techniques to create synthetic media where the likeness of one person is replaced with another. There are growing concerns that deepfakes can be maliciously used to create misleading and harmful digital contents. As deepfakes become more common, there is a dire need for deepfake detection technology to help spot deepfake media. Present deepfake detection models are able to achieve outstanding accuracy (>90%). However, most of them are limited to within-dataset scenario, where the same dataset is used for training and testing. Most models do not generalise well enough in cross-dataset scenario, where models are tested on unseen datasets from another source. Furthermore, state-of-the-art deepfake detection models rely on neural network-based classification models that are known to be vulnerable to adversarial attacks. Motivated by the need for a robust deepfake detection model, this study adapts metamorphic testing (MT) principles to help identify potential factors that could influence the robustness of the examined model, while overcoming the test oracle problem in this domain. Metamorphic testing is specifically chosen as the testing technique as it fits our demand to address learning-based system testing with probabilistic outcomes from largely black-box components, based on potentially large input domains. We performed our evaluations on MesoInception-4 and TwoStreamNet models, which are the state-of-the-art deepfake detection models. This study identified makeup application as an adversarial attack that could fool deepfake detectors. Our experimental results demonstrate that both the MesoInception-4 and TwoStreamNet models degrade in their performance by up to 30\% when the input data is perturbed with makeup.
Abstract:Fairness of deepfake detectors in the presence of anomalies are not well investigated, especially if those anomalies are more prominent in either male or female subjects. The primary motivation for this work is to evaluate how deepfake detection model behaves under such anomalies. However, due to the black-box nature of deep learning (DL) and artificial intelligence (AI) systems, it is hard to predict the performance of a model when the input data is modified. Crucially, if this defect is not addressed properly, it will adversely affect the fairness of the model and result in discrimination of certain sub-population unintentionally. Therefore, the objective of this work is to adopt metamorphic testing to examine the reliability of the selected deepfake detection model, and how the transformation of input variation places influence on the output. We have chosen MesoInception-4, a state-of-the-art deepfake detection model, as the target model and makeup as the anomalies. Makeups are applied through utilizing the Dlib library to obtain the 68 facial landmarks prior to filling in the RGB values. Metamorphic relations are derived based on the notion that realistic perturbations of the input images, such as makeup, involving eyeliners, eyeshadows, blushes, and lipsticks (which are common cosmetic appearance) applied to male and female images, should not alter the output of the model by a huge margin. Furthermore, we narrow down the scope to focus on revealing potential gender biases in DL and AI systems. Specifically, we are interested to examine whether MesoInception-4 model produces unfair decisions, which should be considered as a consequence of robustness issues. The findings from our work have the potential to pave the way for new research directions in the quality assurance and fairness in DL and AI systems.