Abstract:As machine learning models grow in complexity and increasingly rely on publicly sourced data, such as the human-annotated labels used in training large language models, they become more vulnerable to label poisoning attacks. These attacks, in which adversaries subtly alter the labels within a training dataset, can severely degrade model performance, posing significant risks in critical applications. In this paper, we propose FLORAL, a novel adversarial training defense strategy based on support vector machines (SVMs) to counter these threats. Utilizing a bilevel optimization framework, we cast the training process as a non-zero-sum Stackelberg game between an attacker, who strategically poisons critical training labels, and the model, which seeks to recover from such attacks. Our approach accommodates various model architectures and employs a projected gradient descent algorithm with kernel SVMs for adversarial training. We provide a theoretical analysis of our algorithm's convergence properties and empirically evaluate FLORAL's effectiveness across diverse classification tasks. Compared to robust baselines and foundation models such as RoBERTa, FLORAL consistently achieves higher robust accuracy under increasing attacker budgets. These results underscore the potential of FLORAL to enhance the resilience of machine learning models against label poisoning threats, thereby ensuring robust classification in adversarial settings.
Abstract:Bayesian optimization (BO) is a powerful framework to optimize black-box expensive-to-evaluate functions via sequential interactions. In several important problems (e.g. drug discovery, circuit design, neural architecture search, etc.), though, such functions are defined over large $\textit{combinatorial and unstructured}$ spaces. This makes existing BO algorithms not feasible due to the intractable maximization of the acquisition function over these domains. To address this issue, we propose $\textbf{GameOpt}$, a novel game-theoretical approach to combinatorial BO. $\textbf{GameOpt}$ establishes a cooperative game between the different optimization variables, and selects points that are game $\textit{equilibria}$ of an upper confidence bound acquisition function. These are stable configurations from which no variable has an incentive to deviate$-$ analog to local optima in continuous domains. Crucially, this allows us to efficiently break down the complexity of the combinatorial domain into individual decision sets, making $\textbf{GameOpt}$ scalable to large combinatorial spaces. We demonstrate the application of $\textbf{GameOpt}$ to the challenging $\textit{protein design}$ problem and validate its performance on four real-world protein datasets. Each protein can take up to $20^{X}$ possible configurations, where $X$ is the length of a protein, making standard BO methods infeasible. Instead, our approach iteratively selects informative protein configurations and very quickly discovers highly active protein variants compared to other baselines.