Abstract:This paper presents a novel approach to improve global localization and mapping in indoor drone navigation by integrating 5G Time of Arrival (ToA) measurements into ORB-SLAM3, a Simultaneous Localization and Mapping (SLAM) system. By incorporating ToA data from 5G base stations, we align the SLAM's local reference frame with a global coordinate system, enabling accurate and consistent global localization. We extend ORB-SLAM3's optimization pipeline to integrate ToA measurements alongside bias estimation, transforming the inherently local estimation into a globally consistent one. This integration effectively resolves scale ambiguity in monocular SLAM systems and enhances robustness, particularly in challenging scenarios where standard SLAM may fail. Our method is evaluated using five real-world indoor datasets collected with RGB-D cameras and inertial measurement units (IMUs), augmented with simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. We tested four SLAM configurations: RGB-D, RGB-D-Inertial, Monocular, and Monocular-Inertial. The results demonstrate that while local estimation accuracy remains comparable due to the high precision of RGB-D-based ORB-SLAM3 compared to ToA measurements, the inclusion of ToA measurements facilitates robust global positioning. In scenarios where standard mono-inertial ORB-SLAM3 loses tracking, our approach maintains accurate localization throughout the trajectory.
Abstract:5G New Radio Time of Arrival (ToA) data has the potential to revolutionize indoor localization for micro aerial vehicles (MAVs). However, its performance under varying network setups, especially when combined with IMU data for real-time localization, has not been fully explored so far. In this study, we develop an error state Kalman filter (ESKF) and a pose graph optimization (PGO) approach to address this gap. We systematically evaluate the performance of the derived approaches for real-time MAV localization in realistic scenarios with 5G base stations in Line-Of-Sight (LOS), demonstrating the potential of 5G technologies in this domain. In order to experimentally test and compare our localization approaches, we augment the EuRoC MAV benchmark dataset for visual-inertial odometry with simulated yet highly realistic 5G ToA measurements. Our experimental results comprehensively assess the impact of varying network setups, including varying base station numbers and network configurations, on ToA-based MAV localization performance. The findings show promising results for seamless and robust localization using 5G ToA measurements, achieving an accuracy of 15 cm throughout the entire trajectory within a graph-based framework with five 5G base stations, and an accuracy of up to 34 cm in the case of ESKF-based localization. Additionally, we measure the run time of both algorithms and show that they are both fast enough for real-time implementation.
Abstract:This paper explores the potential of 5G new radio (NR) Time-of-Arrival (TOA) data for indoor drone localization under different scenarios and conditions when fused with inertial measurement unit (IMU) data. Our approach involves performing graph-based optimization to estimate the drone's position and orientation from the multiple sensor measurements. Due to the lack of real-world data, we use Matlab 5G toolbox and QuaDRiGa (quasi-deterministic radio channel generator) channel simulator to generate TOA measurements for the EuRoC MAV indoor dataset that provides IMU readings and ground truths 6DoF poses of a flying drone. Hence, we create twelve sequences combining three predefined indoor scenarios setups of QuaDRiGa with 2 to 5 base station antennas. Therefore, experimental results demonstrate that, for a sufficient number of base stations and a high bandwidth 5G configuration, the pose graph optimization approach achieves accurate drone localization, with an average error of less than 15 cm on the overall trajectory. Furthermore, the adopted graph-based optimization algorithm is fast and can be easily implemented for onboard real-time pose tracking on a micro aerial vehicle (MAV).
Abstract:Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored.