Abstract:Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further research is necessary to incorporate the particular characteristics of these images. We hypothesize that the similarity of medical images hinders the success of contrastive learning in the medical imaging domain. To this end, we investigate different strategies based on deep embedding, information theory, and hashing in order to identify and reduce redundancy in medical pre-training datasets. The effect of these different reduction strategies on contrastive learning is evaluated on two pre-training datasets and several downstream classification tasks. In all of our experiments, dataset reduction leads to a considerable performance gain in downstream tasks, e.g., an AUC score improvement from 0.78 to 0.83 for the COVID CT Classification Grand Challenge, 0.97 to 0.98 for the OrganSMNIST Classification Challenge and 0.73 to 0.83 for a brain hemorrhage classification task. Furthermore, pre-training is up to nine times faster due to the dataset reduction. In conclusion, the proposed approach highlights the importance of dataset quality and provides a transferable approach to improve contrastive pre-training for classification downstream tasks on medical images.
Abstract:Due to the sensitive nature of medicine, it is particularly important and highly demanded that AI methods are explainable. This need has been recognised and there is great research interest in xAI solutions with medical applications. However, there is a lack of user-centred evaluation regarding the actual impact of the explanations. We evaluate attribute- and prototype-based explanations with the Proto-Caps model. This xAI model reasons the target classification with human-defined visual features of the target object in the form of scores and attribute-specific prototypes. The model thus provides a multimodal explanation that is intuitively understandable to humans thanks to predefined attributes. A user study involving six radiologists shows that the explanations are subjectivly perceived as helpful, as they reflect their decision-making process. The results of the model are considered a second opinion that radiologists can discuss using the model's explanations. However, it was shown that the inclusion and increased magnitude of model explanations objectively can increase confidence in the model's predictions when the model is incorrect. We can conclude that attribute scores and visual prototypes enhance confidence in the model. However, additional development and repeated user studies are needed to tailor the explanation to the respective use case.
Abstract:Interpretability is often an essential requirement in medical imaging. Advanced deep learning methods are required to address this need for explainability and high performance. In this work, we investigate whether additional information available during the training process can be used to create an understandable and powerful model. We propose an innovative solution called Proto-Caps that leverages the benefits of capsule networks, prototype learning and the use of privileged information. Evaluating the proposed solution on the LIDC-IDRI dataset shows that it combines increased interpretability with above state-of-the-art prediction performance. Compared to the explainable baseline model, our method achieves more than 6 % higher accuracy in predicting both malignancy (93.0 %) and mean characteristic features of lung nodules. Simultaneously, the model provides case-based reasoning with prototype representations that allow visual validation of radiologist-defined attributes.
Abstract:Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging domain, annotated datasets for specific tasks are often small due to the high complexity of annotations, limited access, or the rarity of diseases. To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning. After pre-training, small annotated datasets are sufficient to fine-tune the models for a specific task. The most popular self-supervised pre-training approaches in medical imaging are based on contrastive learning. However, recent studies in natural image processing indicate a strong potential for masked autoencoder approaches. Our work compares state-of-the-art contrastive learning methods with the recently introduced masked autoencoder approach "SparK" for convolutional neural networks (CNNs) on medical images. Therefore we pre-train on a large unannotated CT image dataset and fine-tune on several CT classification tasks. Due to the challenge of obtaining sufficient annotated training data in medical imaging, it is of particular interest to evaluate how the self-supervised pre-training methods perform when fine-tuning on small datasets. By experimenting with gradually reducing the training dataset size for fine-tuning, we find that the reduction has different effects depending on the type of pre-training chosen. The SparK pre-training method is more robust to the training dataset size than the contrastive methods. Based on our results, we propose the SparK pre-training for medical imaging tasks with only small annotated datasets.
Abstract:Since the beginning of the COVID-19 pandemic, researchers have developed deep learning models to classify COVID-19 induced pneumonia. As with many medical imaging tasks, the quality and quantity of the available data is often limited. In this work we train a deep learning model on publicly available COVID-19 image data and evaluate the model on local hospital chest X-ray data. The data has been reviewed and labeled by two radiologists to ensure a high quality estimation of the generalization capabilities of the model. Furthermore, we are using a Generative Adversarial Network to generate synthetic X-ray images based on this data. Our results show that using those synthetic images for data augmentation can improve the model's performance significantly. This can be a promising approach for many sparse data domains.