Abstract:The problem of simultaneous column and row subset selection is addressed in this paper. The column space and row space of a matrix are spanned by its left and right singular vectors, respectively. However, the singular vectors are not within actual columns/rows of the matrix. In this paper, an iterative approach is proposed to capture the most structural information of columns/rows via selecting a subset of actual columns/rows. This algorithm is referred to as two-way spectrum pursuit (TWSP) which provides us with an accurate solution for the CUR matrix decomposition. TWSP is applicable in a wide range of applications since it enjoys a linear complexity w.r.t. number of original columns/rows. We demonstrated the application of TWSP for joint channel and sensor selection in cognitive radio networks, informative users and contents detection, and efficient supervised data reduction.
Abstract:A new framework for a secure and robust consensus in blockchain-based IoT networks is proposed using machine learning. Hyperledger fabric, which is a blockchain platform developed as part of the Hyperledger project, though looks very apt for IoT applications, has comparatively low tolerance for malicious activities in an untrustworthy environment. To that end, we propose AI-enabled blockchain (AIBC) with a 2-step consensus protocol that uses an outlier detection algorithm for consensus in an IoT network implemented on hyperledger fabric platform. The outlier-aware consensus protocol exploits a supervised machine learning algorithm which detects anomaly activities via a learned detector in the first step. Then, the data goes through the inherent Practical Byzantine Fault Tolerance (PBFT) consensus protocol in the hyperledger fabric for ledger update. We measure and report the performance of our framework with respect to the various delay components. Results reveal that our implemented AIBC network (2-step consensus protocol) improves hyperledger fabric performance in terms of fault tolerance by marginally compromising the delay performance.