Abstract:Accurately segmenting different organs from medical images is a critical prerequisite for computer-assisted diagnosis and intervention planning. This study proposes a deep learning-based approach for segmenting various organs from CT and MRI scans and classifying diseases. Our study introduces a novel technique integrating momentum within residual blocks for enhanced training dynamics in medical image analysis. We applied our method in two distinct tasks: segmenting liver, lung, & colon data and classifying abdominal pelvic CT and MRI scans. The proposed approach has shown promising results, outperforming state-of-the-art methods on publicly available benchmarking datasets. For instance, in the lung segmentation dataset, our approach yielded significant enhancements over the TransNetR model, including a 5.72% increase in dice score, a 5.04% improvement in mean Intersection over Union (mIoU), an 8.02% improvement in recall, and a 4.42% improvement in precision. Hence, incorporating momentum led to state-of-the-art performance in both segmentation and classification tasks, representing a significant advancement in the field of medical imaging.
Abstract:Activation functions are crucial in deep learning models since they introduce non-linearity into the networks, allowing them to learn from errors and make adjustments, which is essential for learning complex patterns. The essential purpose of activation functions is to transform unprocessed input signals into significant output activations, promoting information transmission throughout the neural network. In this study, we propose a new activation function called Sqish, which is a non-monotonic and smooth function and an alternative to existing ones. We showed its superiority in classification, object detection, segmentation tasks, and adversarial robustness experiments. We got an 8.21% improvement over ReLU on the CIFAR100 dataset with the ShuffleNet V2 model in the FGSM adversarial attack. We also got a 5.87% improvement over ReLU on image classification on the CIFAR100 dataset with the ShuffleNet V2 model.