Abstract:We are presenting COVID-19Base, a knowledgebase highlighting the biomedical entities related to COVID-19 disease based on literature mining. To develop COVID-19Base, we mine the information from publicly available scientific literature and related public resources. We considered seven topic-specific dictionaries, including human genes, human miRNAs, human lncRNAs, diseases, Protein Databank, drugs, and drug side effects, are integrated to mine all scientific evidence related to COVID-19. We have employed an automated literature mining and labeling system through a novel approach to measure the effectiveness of drugs against diseases based on natural language processing, sentiment analysis, and deep learning. To the best of our knowledge, this is the first knowledgebase dedicated to COVID-19, which integrates such large variety of related biomedical entities through literature mining. Proper investigation of the mined biomedical entities along with the identified interactions among those, reported in COVID-19Base, would help the research community to discover possible ways for the therapeutic treatment of COVID-19.
Abstract:The proliferation of fake news and its propagation on social media have become a major concern due to its ability to create devastating impacts. Different machine learning approaches have been attempted to detect it. However, most of those focused on a special type of news (such as political) and did not apply many advanced techniques. In this research, we conduct a benchmark study to assess the performance of different applicable approaches on three different datasets where the largest and most diversified one was developed by us. We also implemented some advanced deep learning models that have shown promising results.