Abstract:Chronic Kidney Disease (CKD) represents a significant global health challenge, characterized by the progressive decline in renal function, leading to the accumulation of waste products and disruptions in fluid balance within the body. Given its pervasive impact on public health, there is a pressing need for effective diagnostic tools to enable timely intervention. Our study delves into the application of cutting-edge transfer learning models for the early detection of CKD. Leveraging a comprehensive and publicly available dataset, we meticulously evaluate the performance of several state-of-the-art models, including EfficientNetV2, InceptionNetV2, MobileNetV2, and the Vision Transformer (ViT) technique. Remarkably, our analysis demonstrates superior accuracy rates, surpassing the 90% threshold with MobileNetV2 and achieving 91.5% accuracy with ViT. Moreover, to enhance predictive capabilities further, we integrate these individual methodologies through ensemble modeling, resulting in our ensemble model exhibiting a remarkable 96% accuracy in the early detection of CKD. This significant advancement holds immense promise for improving clinical outcomes and underscores the critical role of machine learning in addressing complex medical challenges.
Abstract:This research paper presents a comprehensive review-based study on various Text-to-Speech (TTS) technologies. TTS technology is an important aspect of human-computer interaction, enabling machines to convert written text into audible speech. The paper examines the different TTS technologies available, including concatenative TTS, formant synthesis TTS, and statistical parametric TTS. The study focuses on comparing the advantages and limitations of these technologies in terms of their naturalness of voice, the level of complexity of the system, and their suitability for different applications. In addition, the paper explores the latest advancements in TTS technology, including neural TTS and hybrid TTS. The findings of this research will provide valuable insights for researchers, developers, and users who want to understand the different TTS technologies and their suitability for specific applications.