Abstract:Chronic Kidney Disease (CKD) represents a significant global health challenge, characterized by the progressive decline in renal function, leading to the accumulation of waste products and disruptions in fluid balance within the body. Given its pervasive impact on public health, there is a pressing need for effective diagnostic tools to enable timely intervention. Our study delves into the application of cutting-edge transfer learning models for the early detection of CKD. Leveraging a comprehensive and publicly available dataset, we meticulously evaluate the performance of several state-of-the-art models, including EfficientNetV2, InceptionNetV2, MobileNetV2, and the Vision Transformer (ViT) technique. Remarkably, our analysis demonstrates superior accuracy rates, surpassing the 90% threshold with MobileNetV2 and achieving 91.5% accuracy with ViT. Moreover, to enhance predictive capabilities further, we integrate these individual methodologies through ensemble modeling, resulting in our ensemble model exhibiting a remarkable 96% accuracy in the early detection of CKD. This significant advancement holds immense promise for improving clinical outcomes and underscores the critical role of machine learning in addressing complex medical challenges.
Abstract:This paper proposes an approach to detect emotion from human speech employing majority voting technique over several machine learning techniques. The contribution of this work is in two folds: firstly it selects those features of speech which is most promising for classification and secondly it uses the majority voting technique that selects the exact class of emotion. Here, majority voting technique has been applied over Neural Network (NN), Decision Tree (DT), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Input vector of NN, DT, SVM and KNN consists of various acoustic and prosodic features like Pitch, Mel-Frequency Cepstral coefficients etc. From speech signal many feature have been extracted and only promising features have been selected. To consider a feature as promising, Fast Correlation based feature selection (FCBF) and Fisher score algorithms have been used and only those features are selected which are highly ranked by both of them. The proposed approach has been tested on Berlin dataset of emotional speech [3] and Electromagnetic Articulography (EMA) dataset [4]. The experimental result shows that majority voting technique attains better accuracy over individual machine learning techniques. The employment of the proposed approach can effectively recognize the emotion of human beings in case of social robot, intelligent chat client, call-center of a company etc.