Abstract:Recent advancements in reservoir computing research have created a demand for analog devices with dynamics that can facilitate the physical implementation of reservoirs, promising faster information processing while consuming less energy and occupying a smaller area footprint. Studies have demonstrated that dynamic memristors, with nonlinear and short-term memory dynamics, are excellent candidates as information-processing devices or reservoirs for temporal classification and prediction tasks. Previous implementations relied on nominally identical memristors that applied the same nonlinear transformation to the input data, which is not enough to achieve a rich state space. To address this limitation, researchers either diversified the data encoding across multiple memristors or harnessed the stochastic device-to-device variability among the memristors. However, this approach requires additional pre-processing steps and leads to synchronization issues. Instead, it is preferable to encode the data once and pass it through a reservoir layer consisting of memristors with distinct dynamics. Here, we demonstrate that ion-channel-based memristors with voltage-dependent dynamics can be controllably and predictively tuned through voltage or adjustment of the ion channel concentration to exhibit diverse dynamic properties. We show, through experiments and simulations, that reservoir layers constructed with a small number of distinct memristors exhibit significantly higher predictive and classification accuracies with a single data encoding. We found that for a second-order nonlinear dynamical system prediction task, the varied memristor reservoir experimentally achieved a normalized mean square error of 0.0015 using only five distinct memristors. Moreover, in a neural activity classification task, a reservoir of just three distinct memristors experimentally attained an accuracy of 96.5%.
Abstract:Neuromorphic Computing promises orders of magnitude improvement in energy efficiency compared to traditional von Neumann computing paradigm. The goal is to develop an adaptive, fault-tolerant, low-footprint, fast, low-energy intelligent system by learning and emulating brain functionality which can be realized through innovation in different abstraction layers including material, device, circuit, architecture and algorithm. As the energy consumption in complex vision tasks keep increasing exponentially due to larger data set and resource-constrained edge devices become increasingly ubiquitous, spike-based neuromorphic computing approaches can be viable alternative to deep convolutional neural network that is dominating the vision field today. In this book chapter, we introduce neuromorphic computing, outline a few representative examples from different layers of the design stack (devices, circuits and algorithms) and conclude with a few exciting applications and future research directions that seem promising for computer vision in the near future.
Abstract:Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting features from the input signal and mapping them into higher dimensional spaces. Physical reservoir layers have been realized using spintronic oscillators, atomic switch networks, silicon photonic modules, ferroelectric transistors, and volatile memristors. However, these devices are intrinsically energy-dissipative due to their resistive nature, which leads to increased power consumption. Therefore, capacitive memory devices can provide a more energy-efficient approach. Here, we leverage volatile biomembrane-based memcapacitors that closely mimic certain short-term synaptic plasticity functions as reservoirs to solve classification tasks and analyze time-series data in simulation and experimentally. Our system achieves a 98% accuracy rate for spoken digit classification and a normalized mean square error of 0.0012 in a second-order non-linear regression task. Further, to demonstrate the device's real-time temporal data processing capability, we demonstrate a 100% accuracy for an electroencephalography (EEG) signal classification problem for epilepsy detection. Most importantly, we demonstrate that for a random input sequence, each memcapacitor consumes on average 41.5fJ of energy per spike, irrespective of the chosen input voltage pulse width, and 415fW of average power for 100 ms pulse width, orders of magnitude lower than the state-of-the-art devices. Lastly, we believe the biocompatible, soft nature of our memcapacitor makes it highly suitable for computing and signal-processing applications in biological environments.