Abstract:In the evolving NLP landscape, benchmarks serve as yardsticks for gauging progress. However, existing Legal NLP benchmarks only focus on predictive tasks, overlooking generative tasks. This work curates LexSumm, a benchmark designed for evaluating legal summarization tasks in English. It comprises eight English legal summarization datasets, from diverse jurisdictions, such as the US, UK, EU and India. Additionally, we release LexT5, legal oriented sequence-to-sequence model, addressing the limitation of the existing BERT-style encoder-only models in the legal domain. We assess its capabilities through zero-shot probing on LegalLAMA and fine-tuning on LexSumm. Our analysis reveals abstraction and faithfulness errors even in summaries generated by zero-shot LLMs, indicating opportunities for further improvements. LexSumm benchmark and LexT5 model are available at https://github.com/TUMLegalTech/LexSumm-LexT5.
Abstract:Rhetorical Role Labeling (RRL) of legal documents is pivotal for various downstream tasks such as summarization, semantic case search and argument mining. Existing approaches often overlook the varying difficulty levels inherent in legal document discourse styles and rhetorical roles. In this work, we propose HiCuLR, a hierarchical curriculum learning framework for RRL. It nests two curricula: Rhetorical Role-level Curriculum (RC) on the outer layer and Document-level Curriculum (DC) on the inner layer. DC categorizes documents based on their difficulty, utilizing metrics like deviation from a standard discourse structure and exposes the model to them in an easy-to-difficult fashion. RC progressively strengthens the model to discern coarse-to-fine-grained distinctions between rhetorical roles. Our experiments on four RRL datasets demonstrate the efficacy of HiCuLR, highlighting the complementary nature of DC and RC.
Abstract:In high-stakes decision-making tasks within legal NLP, such as Case Outcome Classification (COC), quantifying a model's predictive confidence is crucial. Confidence estimation enables humans to make more informed decisions, particularly when the model's certainty is low, or where the consequences of a mistake are significant. However, most existing COC works prioritize high task performance over model reliability. This paper conducts an empirical investigation into how various design choices including pre-training corpus, confidence estimator and fine-tuning loss affect the reliability of COC models within the framework of selective prediction. Our experiments on the multi-label COC task, focusing on European Court of Human Rights (ECtHR) cases, highlight the importance of a diverse yet domain-specific pre-training corpus for better calibration. Additionally, we demonstrate that larger models tend to exhibit overconfidence, Monte Carlo dropout methods produce reliable confidence estimates, and confident error regularization effectively mitigates overconfidence. To our knowledge, this is the first systematic exploration of selective prediction in legal NLP. Our findings underscore the need for further research on enhancing confidence measurement and improving the trustworthiness of models in the legal domain.
Abstract:Inspired by the legal doctrine of stare decisis, which leverages precedents (prior cases) for informed decision-making, we explore methods to integrate them into LJP models. To facilitate precedent retrieval, we train a retriever with a fine-grained relevance signal based on the overlap ratio of alleged articles between cases. We investigate two strategies to integrate precedents: direct incorporation at inference via label interpolation based on case proximity and during training via a precedent fusion module using a stacked-cross attention model. We employ joint training of the retriever and LJP models to address latent space divergence between them. Our experiments on LJP tasks from the ECHR jurisdiction reveal that integrating precedents during training coupled with joint training of the retriever and LJP model, outperforms models without precedents or with precedents incorporated only at inference, particularly benefiting sparser articles.
Abstract:Modeling legal reasoning and argumentation justifying decisions in cases has always been central to AI & Law, yet contemporary developments in legal NLP have increasingly focused on statistically classifying legal conclusions from text. While conceptually simpler, these approaches often fall short in providing usable justifications connecting to appropriate legal concepts. This paper reviews both traditional symbolic works in AI & Law and recent advances in legal NLP, and distills possibilities of integrating expert-informed knowledge to strike a balance between scalability and explanation in symbolic vs. data-driven approaches. We identify open challenges and discuss the potential of modern NLP models and methods that integrate
Abstract:This study investigates the challenges posed by the dynamic nature of legal multi-label text classification tasks, where legal concepts evolve over time. Existing models often overlook the temporal dimension in their training process, leading to suboptimal performance of those models over time, as they treat training data as a single homogeneous block. To address this, we introduce ChronosLex, an incremental training paradigm that trains models on chronological splits, preserving the temporal order of the data. However, this incremental approach raises concerns about overfitting to recent data, prompting an assessment of mitigation strategies using continual learning and temporal invariant methods. Our experimental results over six legal multi-label text classification datasets reveal that continual learning methods prove effective in preventing overfitting thereby enhancing temporal generalizability, while temporal invariant methods struggle to capture these dynamics of temporal shifts.
Abstract:Legal professionals frequently encounter long legal judgments that hold critical insights for their work. While recent advances have led to automated summarization solutions for legal documents, they typically provide generic summaries, which may not meet the diverse information needs of users. To address this gap, we introduce LexAbSumm, a novel dataset designed for aspect-based summarization of legal case decisions, sourced from the European Court of Human Rights jurisdiction. We evaluate several abstractive summarization models tailored for longer documents on LexAbSumm, revealing a challenge in conditioning these models to produce aspect-specific summaries. We release LexAbSum to facilitate research in aspect-based summarization for legal domain.
Abstract:In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of \emph{stare decisis}. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.
Abstract:Legal professionals often grapple with navigating lengthy legal judgements to pinpoint information that directly address their queries. This paper focus on this task of extracting relevant paragraphs from legal judgements based on the query. We construct a specialized dataset for this task from the European Court of Human Rights (ECtHR) using the case law guides. We assess the performance of current retrieval models in a zero-shot way and also establish fine-tuning benchmarks using various models. The results highlight the significant gap between fine-tuned and zero-shot performance, emphasizing the challenge of handling distribution shift in the legal domain. We notice that the legal pre-training handles distribution shift on the corpus side but still struggles on query side distribution shift, with unseen legal queries. We also explore various Parameter Efficient Fine-Tuning (PEFT) methods to evaluate their practicality within the context of information retrieval, shedding light on the effectiveness of different PEFT methods across diverse configurations with pre-training and model architectures influencing the choice of PEFT method.
Abstract:In this paper, we introduce CuSINeS, a negative sampling approach to enhance the performance of Statutory Article Retrieval (SAR). CuSINeS offers three key contributions. Firstly, it employs a curriculum-based negative sampling strategy guiding the model to focus on easier negatives initially and progressively tackle more difficult ones. Secondly, it leverages the hierarchical and sequential information derived from the structural organization of statutes to evaluate the difficulty of samples. Lastly, it introduces a dynamic semantic difficulty assessment using the being-trained model itself, surpassing conventional static methods like BM25, adapting the negatives to the model's evolving competence. Experimental results on a real-world expert-annotated SAR dataset validate the effectiveness of CuSINeS across four different baselines, demonstrating its versatility.