Abstract:Suicide is a prominent issue in society. Unfortunately, many people at risk for suicide do not receive the support required. Barriers to people receiving support include social stigma and lack of access to mental health care. With the popularity of social media, people have turned to online forums, such as Reddit to express their feelings and seek support. This provides the opportunity to support people with the aid of artificial intelligence. Social media posts can be classified, using text classification, to help connect people with professional help. However, these systems fail to account for the inherent uncertainty in classifying mental health conditions. Unlike other areas of healthcare, mental health conditions have no objective measurements of disease often relying on expert opinion. Thus when formulating deep learning problems involving mental health, using hard, binary labels does not accurately represent the true nature of the data. In these settings, where human experts may disagree, fuzzy or soft labels may be more appropriate. The current work introduces a novel label smoothing method which we use to capture any uncertainty within the data. We test our approach on a five-label multi-class classification problem. We show, our semi-supervised deep label smoothing method improves classification accuracy above the existing state of the art. Where existing research reports an accuracy of 43\% on the Reddit C-SSRS dataset, using empirical experiments to evaluate our novel label smoothing method, we improve upon this existing benchmark to 52\%. These improvements in model performance have the potential to better support those experiencing mental distress. Future work should explore the use of probabilistic methods in both natural language processing and quantifying contributions of both epistemic and aleatoric uncertainty in noisy datasets.
Abstract:Repetitive Transcranial Magnetic Stimulation (rTMS) is a well-supported, evidence-based treatment for depression. However, patterns of response to this treatment are inconsistent. Emerging evidence suggests that artificial intelligence can predict rTMS treatment outcomes for most patients using fMRI connectivity features. While these models can reliably predict treatment outcomes for many patients for some underrepresented fMRI connectivity measures DNN models are unable to reliably predict treatment outcomes. As such we propose a novel method, Diversity Enhancing Conditional General Adversarial Network (DE-CGAN) for oversampling these underrepresented examples. DE-CGAN creates synthetic examples in difficult-to-classify regions by first identifying these data points and then creating conditioned synthetic examples to enhance data diversity. Through empirical experiments we show that a classification model trained using a diversity enhanced training set outperforms traditional data augmentation techniques and existing benchmark results. This work shows that increasing the diversity of a training dataset can improve classification model performance. Furthermore, this work provides evidence for the utility of synthetic patients providing larger more robust datasets for both AI researchers and psychiatrists to explore variable relationships.